Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (2): 103-115.doi: 10.16088/j.issn.1001-6600.2021052801
Previous Articles Next Articles
XU Wangjun1, CAO Jinde2, WU Daiyong1, SHEN Chuansheng1*
CLC Number:
[1] MA Z H, WANG S F, WANG T T, et al. Stability analysis of prey-predator system with Holling type functional response and prey refuge[J]. Advances in Difference Equations, 2017, 2017: 243. [2] LIU B, ZHANG Y J, CHEN L S. Dynamic complexities of a Holling I predator-prey model concerning periodic biological and chemical control[J]. Chaos, Solitons & Fractals, 2004, 22(1): 123-134. [3] ZHANG Y J, XU Z L, LIU B, et al. Dynamic analysis of a Holling I predator-prey system with mutual interference concerning pest control[J]. Journal of Biological Systems, 2005, 13(1): 45-58. [4] ZU J, MIMURA M. The impact of Allee effect on a predator-prey system with Holling type II functional response[J]. Applied Mathematics and Computation, 2010, 217(7): 3542-3556. [5] SUN G, SARWARDI S, PAL P J, et al. The spatial patterns through diffusion driven instability in modified Leslie-Gower and Holling-type II predator-prey model[J]. Journal of Biological Systems, 2010, 18(3): 593-603. [6] YI F Q, WEI J J, SHI J P. Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system[J]. Journal of Differential Equations, 2009, 246(5): 1944-1977. [7] FAN M, KUANG Y. Dynamics of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response[J]. Journal of Mathematical Analysis and Applications, 2004, 295(1): 15-39. [8] AJRALDI V, PITTAVINO M, VENTURINO E. Modeling herd behavior in population systems[J]. Nonlinear Analysis: Real World Applications, 2011, 12(4): 2319-2338. [9] KOSOBUD R F, O'NEILL W D. On the dependence of population growth on income: New results in a ricardian-Malthus model[J]. De Economist, 1981, 129(2): 206-223. [10] TSOULARIS A, WALLACE J. Analysis of logistic growth models[J]. Mathematical Biosciences, 2002, 179(1): 21-55. [11] BOUKAL D S, SABELIS M W, BEREC L. How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses[J]. Theoretical Population Biology, 2007, 72(1): 136-147. [12] KRAMER A M, DENNIS B, LIEBHOLD A M, et al. The evidence for Allee effects[J]. Population Ecology, 2009, 51(3): 341-354. [13] BEREC L, ANGULO E, COURCHAMP F. Multiple Allee effects and population management[J]. Trends in Ecology & Evolution, 2007, 22(4): 185-191. [14] BISWAS S, SAIFUDDIN M, SASMAL S K, et al. A delayed prey-predator system with prey subject to the strong Allee effect and disease[J]. Nonlinear Dynamics, 2016, 84(3): 1569-1594. [15] COURCHAMP F, BEREC L, GASCOIGNE J. Allee effects in ecology and conservation[J]. Environmental Conservation, 2008, 36(1): 80-85. [16] WU D Y, ZHAO H Y. Complex dynamics of a discrete predator-prey model with the prey subject to the Allee effect[J]. Journal of Difference Equations Applications, 2017, 23(11): 1765-1806. [17] PETROVSKII S, MOROZOV A, LI B L. Regimes of biological invasion in a predator-prey system with the Allee effect[J]. Bulletin of Mathematical Biology, 2005, 67(3): 637-661. [18] RAO F, KANG Y. The complex dynamics of a diffusive prey-predator model with an Allee effect in prey[J]. Ecological Complexity, 2016, 28: 123-144. [19] BARCLAY H J. Models for pest control using predator release, habitat management and pesticide release in combination[J]. Journal of Applied Ecology, 1982, 19(2): 337-348. [20] TANG S Y, TANG G Y, CHEKE R A. Optimum timing for integrated pest management: Modelling rates of pesticide application and natural enemy releases[J]. Journal of Theoretical Biology, 2010, 264(2): 623-638. [21] 成定平. 鼠类-天敌系统渐近稳定性的数学分析[J]. 生物数学学报, 2003, 18(3): 283-286. [22] CHEN Y M, ZHANG F Q. Dynamics of a delayed predator-prey model with predator migration[J]. Applied Mathematical Modelling, 2013, 37(3): 1400-1412. [23] JIN M, XU F, SHEN C S, et al. Nontrivial effect of time varying migration on the three species prey-predator system[J]. Communications in Theoretical Physics, 2019, 71(1): 127-131. [24] ABDLLAOUI A E, AUGER P, KOOI B W, et al. Effects of density-dependent migrations on stability of a two-patch predator-prey model[J]. Mathematical Biosciences, 2007, 210(1): 335-354. [25] HUANG Y, DIEKMANN O. Predator migration in response to prey density: What are the consequences?[J]. Journal of Mathematical Biology, 2001, 43(6): 561-581. [26] SUN G Q, JIN Z, LIU Q X, et al. Dynamical complexity of a spatial predator-prey model with migration[J]. Ecological Modelling, 2008, 219(1/2): 248-255. [27] PETROVSKII S, LI B L. An exactly solvable model of population dynamics with density-dependent migrations and the Allee effect[J]. Mathematical Biosciences, 2003, 186(1): 79-91. |
[1] | ZHANG Wanjing, LIN Zhigui. Turing Instability of a Parasite-host Model on Growing Domains [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 132-139. |
[2] | RUAN Wenjing, YANG Qigui. Research on Complex Dynamics of a New Four-dimensional Hyperchaotic System with Finite and Infinite Isolated Singularities [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 173-181. |
[3] | CHEN Dong, HU Kui. Cover Gorenstein AC-flat Dimensions [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 51-55. |
[4] | ZHENG Tao, ZHOU Xinran, ZHANG Long. Global Asymptotic Stability of Predator-Competition-Cooperative Hybrid Population Models of Three Species [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 64-70. |
[5] | WANG Junjie, WEN Xueyan, XU Kesheng, YU Ming. An Improved Stack Algorithm Based on Local Sensitive Hash [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 21-31. |
[6] | CHEN Xiong, ZHU Yu, FENG Ke, YU Tongwei. Identity Authentication of Power System Safetyand Stability Control Terminals Based on Blockchain [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 8-18. |
[7] | LUO Lan, ZHOU Nan, SI Jie. New Delay Partition Method for Robust Stability of Uncertain Cellular Neural Networks with Time-Varying Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 45-52. |
[8] | HONG Lingling, YANG Qigui. Research on Complex Dynamics of a New 4D Hyperchaotic System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 96-105. |
[9] | WU Juan, ZHU Hongyang, MEI Ping, CHEN Wu, LI Zhongbao. Polymethyl Methacrylate Modified Nano-Silica and Its Stabilizing Effect on Pickering Emulsion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 120-131. |
[10] | CHEN Siyu, ZOU Yanli, ZHOU Jian, TAN Huazhen. Study on the Power Allocation of Power Generators and Unbalanced Development of Loadson Power Grids [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 52-59. |
[11] | HAN Huiqing, CAI Guangpeng, YIN Changying, MA Geng, ZHANG Yingjia, LU Yi. Analysis of Landscape Stability in Middle and Upper Reaches of the Wujiang River in 2000 and 2015 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 197-204. |
[12] | MIAO Xinyan, ZHANG Long, LUO Yantao, PAN Lijun. Study on a Class of Alternative Competition-Cooperation Hybrid Population Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 25-31. |
[13] | MEI Chuncao, WEI Duqu*, LUO Xiaoshu. Stability Analysis of Inductive Load of Distributed Generation System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 50-55. |
[14] | FENG Jinming,LI Zunxian. Stability Analysis of a Class of Epidemic Model with Diffusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 63-68. |
[15] | ZHANG Xueliang,TAN Huili, BAI Kezhao, TANG Guoning,DENG Minyi. A Cellular Automaton Model Connected to the ConductionRestitution Property of Cardiac Cells [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 1-9. |
|