Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (2): 116-124.doi: 10.16088/j.issn.1001-6600.2021052401
Previous Articles Next Articles
JIANG Qunqun, WANG Linfeng*
CLC Number:
[1] LI P, WANG J P. Complete manifolds with positive spectrum, II[J]. Journal of Differential Geometry, 2002, 62: 143-162. [2] LI P. Geometric analysis[M]. Cambridge: Cambridge University Press, 2012. [3] YAU S T. Harmonic functions on complete Riemannian manifolds[J]. Communications on Pure and Applied Mathematics, 1975, 28(2): 201-228. [4] WANG L F. The upper bound of the L2μ spectrum[J]. Annals of Global Analysis and Geometry, 2010, 37(4) : 393-402. [5] MA L. Gradient estimates for a simple elliptic equation on complete non-compact Riemannian manifolds[J]. Journal of Functional Analysis, 2006, 241(1): 374-382. [6] PERELMAN G. The entropy formula for the Ricci flow and its geometric applications[EB/OL]. (2002-11-11)[2021-05-24]. https://arxiv.org/abs/math/0211159. [7] ROTHAUS S. Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators[J]. Journal of Functional Analysis, 1981, 42(1): 110-120. [8] NI L. The entropy formula for linear heat equation[J]. Journal of Geometric Analysis, 2004, 14(1): 87-100. [9] WANG L F. A new entropy formula for the linear heat equation[J]. Archiv der Mathematik, 2011, 96(5): 473-481. [10] KOTSCHWAR B, NI L. Local gradient estimates of p-harmonic functions, 1/H-flow, and an entropy formula[J]. Annales Scientifiques de l′École Normale Supérieure, 2009, 42(1): 1-36. [11] WANG L F, ZHU Y P. A sharp gradient estimate for the weighted p-Laplacian[J]. Applied Mathematics-A Journal of Chinese Universities, 2012, 27(4): 462-474. [12] 周俞洁, 张泽宇, 王林峰. 黎曼流形上p-Laplace算子的Liouville定理[J]. 西南大学学报(自然科学版), 2017, 39(10): 62-68. [13] 魏公明. 具奇系数发展型p-Laplace不等方程整体解的不存在性[J]. 数学年刊A辑, 2007, 28(3): 387-394. [14] 汪悦. Riemann流形上改进的p-Laplace方程的梯度估计[J]. 中国科学(数学), 2014, 44(3): 288-294. [15] 王林峰. p-Laplace Schrödinger 热方程的椭圆型梯度估计[J]. 数学学报, 2010, 53(4): 643-654. [16] TOLKSDORF P. Regularity for a more general class of quasilinear elliptic equations[J]. Journal of Differential Equations, 1984, 51(1): 126-150. [17] WANG L F. Gradient estimates on the weighted p-Laplace heat equation[J]. Journal of Differential Equations, 2018, 264(1): 506-524. [18] SCHEON R, YAU S T. Lectures on differential geometry[M]. Cambridge, MA: International Press, 1994. |
[1] | ZHANG Zhifei, DUAN Qian, LIU Naijia, HUANG Lei. High-dimensional Nonlinear Regression Model Based on JMI [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 43-56. |
[2] | LU Miao, HE Dengxu, QU Liangdong. Grey Wolf Optimization Algorithm Based on Elite Learning for Nonlinear Parameters [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 55-67. |
[3] | LAN Haifeng, XIAO Feiyan, ZHANG Gengen, ZHU Rui. Error Analysis of Compact Implicit-Explicit BDF Method forNonlinear Partial Integral Differential Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 82-91. |
[4] | HE Dongping,HUANG Wentao ,WANG Qinlong. Limit Cycle Flutter and Chaostic Motion of Two-Dimensional Airfoil System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 87-95. |
[5] | XING Wei,GAO Jinfang,YAN Qisheng,ZHOU Qihua. An SIQR Epidemic Model with Nonlinear Incidence Rateand Impulsive Vaccination [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 58-65. |
[6] | YAN Heng-zhuang, CHEN Jun, WANG Fei, ZHOU Jian-jiang. FM Signal Detection Based on Short-time Fractional Fourier Transform [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 30-37. |
[7] | JIANG Chao-long, LUO Ting, SUN Jian-qiang. Multi-symplectic Method of the Fifth Order Saturated Nonlinear Schrödinger Equation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 71-77. |
[8] | ZHOU Chang-hui, WU Qi-xun, HOU Qing-gao. Topologic Study on Aliphatic Amines QSPR [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 93-97. |
[9] | PENG Zai-yun, KONG Xiang-xi. Strongly Semi-G-preinvexity and Nonlinear Programming [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(1): 48-53. |
[10] | ZHOU Chang-hui, WU Qi-xun, HOU Qing-gao, GAO Yan-zi, LI Hong-nan, ZHANG Rui. Application of Topology Index in Aliphatic Aldehydes,Fatty Amines and Aliphatic Hydrocarbons Boiling Point [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(1): 82-87. |
[11] | HAO Ping-ping, FENG Chun-hua. Dynamics of a Nicholson's Model with a Nonlinear Density-dependent Mortality Term [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 42-47. |
[12] | GAO Jun-fen, HU Wei-ping. Recognition and Study of Pathological Voices Based on NonlinearDynamics Using GMM [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 5-8. |
|