Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (2): 91-102.doi: 10.16088/j.issn.1001-6600.2021072301

Previous Articles     Next Articles

Study on Multi-information Integration for Drug Target Prediction

TAN Kai1, LI Yongjie1, PAN Haiming1, HUANG Kexin2, QIU Jie2, CHEN Qingfeng1*   

  1. 1. School of Computer, Electronics and Information, Guangxi University, Nanning Guangxi 530004, China;
    2. Guangxi Medical University, Nanning Guangxi 530021, China;
    3. School of Computer Science and Engineering, Yulin Normal University, Yulin Guangxi 537000, China
  • Received:2021-07-23 Revised:2021-10-09 Published:2022-05-31

Abstract: Accurate determination of drug-target interactions is crucial in drug discovery process and repositioning. Traditional methods for DTI prediction are either time-consuming (simulation-based methods) or heavily dependent on domain expertise (similarity-based and feature-based methods). Existing computation-based methods using single data information or sparse data, always suffer from high false positive rates. Although integrating multiple heterogeneous networks has been prevalent for drug target prediction, how to retain as much structural information as possible is still a big challenge. This paper proposes a novel framework NGDTI, which extracts relevant biological properties and association information from the network while maintaining the topology information. Further, the graph neural network is applied to update the extracted feature information. The learned topology-preserving representations of drugs and targets promote DTI prediction. Compared with the state-of-the-art methods, NGDTI increases the AUPR value by nearly 0.01. The results demonstrate that NGDTI is promising for drug development and repositioning.

Key words: drug target association prediction, network embedding, network integration, matrix decomposition, graph neural network

CLC Number: 

  • TP183
[1] 徐国保, 陈媛晓, 王骥. 基于图卷积网络的药物靶标关联预测算法[J]. 计算机应用, 2021, 41(5): 1522-1526. DOI: 10.11772/j.issn.1001-9081.2020081186.
[2] 余冬华, 郭茂祖, 刘晓燕, 等. 药物靶标作用关系预测结果评价及查询验证[J]. 计算机研究与发展, 2019, 56(9): 1881-1888. DOI: 10.7544/issn1000-1239.2019.20180830.
[3] 宫莉, 康经武. 基于化学蛋白质组学的药物靶标鉴定[J]. 色谱, 2020, 38(8): 877-879.
[4] 李梢. 网络靶标: 中药方剂网络药理学研究的一个切入点[J]. 中国中药杂志, 2011, 36(15): 2017-2020.
[5] PAUL S M, MYTELKA D S, DUNWIDDIE C T, et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge[J]. Nature Reviews Drug Discovery, 2010, 9(3): 203-214. DOI: 10.1038/nrd3078.
[6] 彭利红, 刘海燕, 任日丽, 等. 基于多标记学习预测药物-靶标相互作用[J]. 计算机工程与应用, 2017, 53(15): 260-265.
[7] MORRIS G M, HUEY R, LINDSTROM W, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility[J]. Journal of Computational Chemistry, 2009, 30(16): 2785-2791. DOI: 10.1002/jcc.21256.
[8] KEISER M J, ROTH B L, ARMBRUSTER B N, et al. Relating protein pharmacology by ligand chemistry[J]. Nature Biotechnology, 2007, 25(2): 197-206. DOI: 10.1038/nbt1284.
[9] KLIPP E, WADE R C, KUMMER U. Biochemical network-based drug-target prediction[J]. Current opinion in biotechnology, 2010, 21(4): 511-516. DOI: 10.1016/j.copbio.2010.05.004.
[10] YAMANISHI Y, ARAKI M, GUTTERIDGE A, et al. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces[J]. Bioinformatics, 2008, 24(13): i232-i240. DOI: 10.1093/bioinformatics/btn162.
[11] BLEAKLEY K, YAMANISHI Y. Supervised prediction of drug-target interactions using bipartite local models[J]. Bioinformatics, 2009, 25(18): 2397-2403. DOI: 10.1093/bioinformatics/btp433.
[12] MEI J P, KWOH C K, YANG P, et al. Drug-target interaction prediction by learning from local information and neighbors[J]. Bioinformatics, 2013, 29(2): 238-245. DOI: 10.1093/bioinformatics/bts670.
[13] VAN LAARHOVEN T, NABUURS S B, MARCHIORI E. Gaussian interaction profile kernels for predicting drug-target interaction[J]. Bioinformatics, 2011, 27(21): 3036-3043. DOI: 10.1093/bioinformatics/btr500.
[14] PAHIKKALA T, AIROLA A, PIETILÄ S, et al. Toward more realistic drug-target interaction predictions[J]. Briefings in Bioinformatics, 2015, 16(2): 325-337. DOI: 10.1093/bib/bbu010.
[15] HAO M, WANG Y L, BRYANT S H. Improved prediction of drug-target interactions using regularized least squares integrating with kernel fusion technique[J]. Analytica Chimica Acta, 2016, 909: 41-50. DOI: 10.1016/j.aca.2016.01.014.
[16] NASCIMENTO A C A, PRUDÊNCIO R B C, COSTA I G. A multiple kernel learning algorithm for drug-target interaction prediction[J]. BMC Bioinformatics, 2016, 17: 46. DOI: 10.1186/s12859-016-0890-3.
[17] LIU Y, WU M, MIAO C Y, et al. Neighborhood regularized logistic matrix factorization for drug-target interaction prediction[J]. PLOS Computational Biology, 2016, 12(2): e1004760. DOI: 10.1371/journal.pcbi.1004760.
[18] GÖNEN M. Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization[J]. Bioinformatics, 2012, 28(18): 2304-2310. DOI: 10.1093/bioinformatics/bts360.
[19] ZHENG X D, DING H, MAMITSUKA H, et al. Collaborative matrix factorization with multiple similarities for predicting drug-target interactions[C]// Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY: ACM Press, 2013: 1025-1033. DOI: 10.1145/2487575.2487670.
[20] HAO M, BRYANT S H, WANG Y L. Predicting drug-target interactions by dual-network integrated logistic matrix factorization[J]. Scientific Reports, 2017, 7: 40376. DOI: 10.1038/srep40376.
[21] MIZUTANI S, PAUWELS E, STOVEN V, et al. Relating drug-protein interaction network with drug side effects[J]. Bioinformatics, 2012, 28(18): i522-i528. DOI: 10.1093/bioinformatics/bts383.
[22] LUO Y N, ZHAO X B, ZHOU J T, et al. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information[J]. Nature Communications, 2017, 8: 537. DOI: 10.1038/s41467-017-00680-8.
[23] NATARAJAN N, DHILLON I S. Inductive matrix completion for predicting gene-disease associations[J]. Bioinformatics, 2014, 30(12): i60-i68. DOI: 10.1093/bioinformatics/btu269.
[24] CHEN Q F, LAI D H, LAN W, et al. ILDMSF: inferring associations between long non-coding RNA and disease based on multi-similarity fusion[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18(3): 1106-1112. DOI: 10.1109/TCBB.2019.2936476.
[25] LAN W, LAI D H, CHEN Q F, et al. LDICDL: LncRNA-disease association identification based on collaborative deep learning[J/OL]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020[2021-07-23]. https://ieeexplore.ieee.org/document/9246263. DOI: 10.1109/TCBB.2020.3034910.
[26] 李琳, 梁永全, 刘广明. 基于重启随机游走的图自编码器[J]. 计算机应用研究, 2021, 38(10): 3009-3013. DOI: 10.19734/j.issn.1001-3695.2021.03.0083.
[27] 翟正利, 梁振明, 周炜, 等. 变分自编码器模型综述[J]. 计算机工程与应用, 2019, 55(3): 1-9. DOI: 10.3778/j.issn.1002-8331.1810-0284.
[28] 郭景峰, 董慧, 张庭玮, 等. 主题关注网络的表示学习[J]. 计算机应用, 2020, 40(2): 441-447. DOI: 10.11772/j.issn.1001-9081.2019081529.
[29] 王佩琪, 高原, 刘振宇, 等. 深度卷积神经网络的数据表示方法分析与实践[J]. 计算机研究与发展, 2017, 54(6): 1348-1356. DOI: 10.7544/issn1000-1239.2017.20170098.
[30] 刘思, 刘海, 陈启买, 等. 基于网络表示学习与随机游走的链路预测算法[J]. 计算机应用, 2017, 37(8): 2234-2239. DOI: 10.11772/j.issn.1001-9081.2017.08.2234.
[31] WAN F P, HONG L X, XIAO A, et al. NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions[J]. Bioinformatics, 2019, 35(1): 104-111. DOI: 10.1093/bioinformatics/bty543.
[32] GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[C]// Proceedings of the 34th International Conference on Machine Learning: Volume 70. Sydney: PMLR, 2017: 1263-1272.
[33] ROSSI R A, ZHOU R, AHMED N K. Deep inductive graph representation learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(3): 438-452. DOI: 10.1109/TKDE.2018.2878247.
[34] WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24. DOI: 10.1109/TNNLS.2020.2978386.
[35] 焦李成, 杨淑媛, 刘芳, 等. 神经网络七十年: 回顾与展望[J]. 计算机学报, 2016, 39(8): 1697-1716.
[36] SUN C, CAO Y K, WEI J M, et al. Autoencoder-based drug-target interaction prediction by preserving the consistency of chemical properties and functions of drugs[J]. Bioinformatics, 2021, 37(20):3618-3625. DOI: 10.1093/bioinformatics/btab384.
[37] XUAN P, ZHANG Y, CUI H, et al. Integrating multi-scale neighbouring topologies and cross-modal similarities for drug-protein interaction prediction[J]. Briefings in Bioinformatics, 2021, 22(5): bbab119. DOI: 10.1093/bib/bbab119.
[38] GAO K Y, FOKOUE A, LUO H, et al. Interpretable drug target prediction using deep neural representation[C]// Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. Marina del Rey, CA: IJCAI, 2018: 3371-3377. DOI: 10.24963/ijcai.2018/468.
[39] WANG S, CHO H H, ZHAI C X, et al. Exploiting ontology graph for predicting sparsely annotated gene function[J]. Bioinformatics, 2015, 31(12): i357-i364. DOI: 10.1093/bioinformatics/btv260.
[40] KIPF T N, WELLING M. Variational graph auto-encoders[EB/OL]. (2016-11-21)[2021-07-23]. https://arxiv.org/abs/1611.07308.
[41] KNOX C, LAW V, JEWISON T, et al. DrugBank 3.0: a comprehensive resource for ‘Omics' research on drugs[J]. Nucleic Acids Research, 2011, 39(suppl_1): D1035-D1041. DOI: 10.1093/nar/gkq1126.
[42] PRASAD T S K, GOEL R, KANDASAMY K, et al. Human protein reference database: 2009 update[J]. Nucleic Acids Research, 2009, 37(suppl_1): D767-D772. DOI: 10.1093/nar/gkn892.
[43] DAVISA P, MURPHY C G, JOHNSON R, et al. The comparative toxicogenomics database: update 2013[J]. Nucleic Acids Research, 2013, 41(D1): D1104-D1114. DOI: 10.1093/nar/gks994.
[44] KUHN M, CAMPILLOS M, LETUNIC I, et al. A side effect resource to capture phenotypic effects of drugs[J]. Molecular Systems Biology, 2010, 6(1): 343. DOI: 10.1038/msb.2009.98.
[45] ROGERS D, HAHN M. Extended-connectivity fingerprints[J]. Journal ofChemical Information and Modeling, 2010, 50(5): 742-754. DOI: 10.1021/ci100050t.
[46] SMITH T F, WATERMAN M S. Identification of common molecular subsequences[J]. Journal of Molecular Biology, 1981, 147(1): 195-197. DOI: 10.1016/0022-2836(81)90087-5.
[47] XIA Z, WU L Y, ZHOU X B, et al. Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces[J]. BMC Systems Biology, 2010, 4(Suppl 2): S6. DOI: 10.1186/1752-0509-4-S2-S6.
[48] WANG W H, YANG S, ZHANG X, et al. Drug repositioning by integrating target information through a heterogeneous network model[J]. Bioinformatics, 2014, 30(20): 2923-2930. DOI: 10.1093/bioinformatics/btu403.
[49] DUVENAUD D, MACLAURIN D, AGUILERA-IPARRAGUIRRE J, et al. Convolutional networks on graphs for learning molecular fingerprints[EB/OL]. (2015-11-03)[2021-07-23]. https://arxiv.org/abs/1509.09292v2.
[50] YANG Y Z, DU H, LI Y H, et al. NR3C1 gene polymorphisms are associated with high-altitude pulmonary edema in Han Chinese[J]. Journal of Physiological Anthropology, 2019, 38: 4. DOI: 10.1186/s40101-019-0194-1.
[51] LIU G X, REMME C A, BOUKENS B J, et al. Overexpression of SCN5A in mouse heart mimics human syndrome of enhanced atrioventricular nodal conduction[J]. Heart Rhythm, 2015, 12(5): 1036-1045. DOI: 10.1016/j.hrthm.2015.01.029.
[52] THOMAS G, GURUNG I S, KILLEEN M J, et al. Effects of L-type Ca2+ channel antagonism on ventricular arrhythmogenesis in murine hearts containing a modification in the Scn5a gene modelling human long QT syndrome 3[J]. The Journal of Physiology, 2007, 578(1): 85-97. DOI: 10.1113/jphysiol.2006.121921.
[53] ULLRICH K, WURSTER K D, LAMPRECHT B, et al. BAY 43-9006/Sorafenib blocks CSF1R activity and induces apoptosis in various classical Hodgkin lymphoma cell lines[J]. British Journal of Haematology, 2011, 155(3): 398-402. DOI: 10.1111/j.1365-2141.2011.08685.x.
[54] TSURKAN L G, HATFIELD M J, EDWARDS C C, et al. Inhibition of human carboxylesterases hCE1 and hiCE by cholinesterase inhibitors[J]. Chemico-biological interactions, 2013, 203(1): 226-230. DOI: 10.1016/j.cbi.2012.10.018.
[1] KONG Yayu, LU Yujie, SUN Zhongtian, XIAO Jingxian, HOU Haochen, CHEN Tingwei. Research on Graph Neural Network Recommendation Algorithms for Reinforcing Current Interest [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 151-160.
[2] NIE Yu, LIAO Xiangwen, WEI Jingjing, YANG Dingda, CHEN Guolong. Multi-label Classification Based on the Deep Autoencoder [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 71-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1 -8 .
[2] WU Kangkang, ZHOU Peng, LU Ye, JIANG Dan, YAN Jianghong, QIAN Zhengcheng, GONG Chuang. FIR Equalizer Based on Mini-batch Gradient Descent Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 9 -20 .
[3] LIU Dong, ZHOU Li, ZHENG Xiaoliang. A Very Short-term Electric Load Forecasting Based on SA-DBN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 21 -33 .
[4] ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34 -46 .
[5] WANG Jinyan, HU Chun, GAO Jian. An OBDD Construction Method for Knowledge Compilation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 47 -54 .
[6] LU Miao, HE Dengxu, QU Liangdong. Grey Wolf Optimization Algorithm Based on Elite Learning for Nonlinear Parameters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 55 -67 .
[7] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68 -78 .
[8] LI Songtao, LI Qunhong, ZHANG Wen. Co-dimension-two Grazing Bifurcation and Chaos Control of Three-degree-of-freedom Vibro-impact Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 79 -92 .
[9] ZHAO Hongtao, LIU Zhiwei. Decompositions of λ-fold Complete Bipartite 3-uniform Hypergraphs λK(3)n,n into Hypergraph Triangular Bipyramid[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 93 -98 .
[10] LI Meng, CAO Qingxian, HU Baoqing. Spatial-temporal Analysis of Continental Coastline Migration from 1960 to 2018 in Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 99 -108 .