Journal of Guangxi Normal University(Natural Science Edition) ›› 2020, Vol. 38 ›› Issue (6): 32-39.doi: 10.16088/j.issn.1001-6600.2020.06.004

Previous Articles     Next Articles

Real-time Detection of Passion Fruit Based on Improved YOLO-V3 Network

TANG Rongchai1,2, WU Xiru1,2*   

  1. 1. College of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin Guangxi 541004, China;
    2. Guangxi Key Laboratory for Nonlinear Circuit and Optical Communication (Guangxi Normal University), Guilin Guangxi 541004, China
  • Received:2020-04-13 Published:2020-11-30

Abstract: Aiming at the problem that the anti-interference ability of the traditional deep learning method and the popular target detection model for the passion fruit detection in real orchards are not ideal, this paper proposes a real-time detection of passion fruit in real orchards based on the improved YOLO-V3 network. Firstly, the prediction scale of large objects in the YOLO-V3 model is eliminated, and the 3-scale prediction is reduced to 2-scale prediction to speed up the detection time. Secondly, the DenseNet network is added to the medium object prediction scale to enhance the propagation of network features for improving the detection accuracy of the model. Finally, the improved YOLO-V3 network is used to train the passion fruit dataset several times to obtain the optimal pre-training model.The experimental results show that the improved YOLO-V3 network has a good real-time detection effect.The average detection accuracy of the target is more than 97.5% and the detection speed is 38 frames/s. The new method provides an effective theoretical basis for real-time detection of passion fruit.

Key words: deep learning, improved YOLO-V3 network, real-time detection, DenseNet network, passion fruit

CLC Number: 

  • TP391.4
[1] 黄成龙. 人工智能及云计算在智慧农业教学中的应用[J]. 科教文汇(上旬刊), 2020(2): 71-72. DOI:10.16871/j.cnki.kjwha.2020.02.033.
[2] 伍锡如, 雪刚刚, 刘英璇. 基于深度学习的水果采摘机器人视觉识别系统设计[J]. 农机化研究, 2020, 42(2): 177-182, 188. DOI:10.13427/j.cnki.njyi.2020.02.033.
[3] SAEDI S I, KHOSRAVI H. A deep neural network approach towards real-time on-branch fruit recognition for precision horticulture[J]. Expert Systems with Applications, 2020, 159: 113594. DOI:10.1016/J.ESWA.2020.113594.
[4] 项荣, 应义斌, 蒋焕煜. 田间环境下果蔬采摘快速识别与定位方法研究进展[J]. 农业机械学报, 2013, 44(11): 208-223. DOI:10.6041/j.issn.1000-1298.2013.11.037.
[5] 吴露露, 马旭, 齐龙, 等. 改进Hough变换的农作物病斑目标检测方法[J]. 农业工程学报, 2014, 30(10): 152-159. DOI:10.3969/j.issn.1002-6819.2014.10.019.
[6] 陈雪鑫, 卜庆凯. 基于多颜色和局部纹理的水果识别算法研究[J]. 青岛大学学报(工程技术版), 2019, 34(3): 52-58. DOI:10.13306/j.1006-9798.2019.03.010.
[7] 邝熠, 陶果, 朱玉洁, 等. 基于深度学习的目标检测算法研究与应用[J]. 计算机产品与流通, 2020(1): 241.
[8] 贺付亮, 郭永彩, 高潮, 等. 基于视觉显著性和脉冲耦合神经网络的成熟桑葚图像分割[J]. 农业工程学报, 2017, 33(6): 148-155. DOI:10.11975/j.issn.1002-6819.2017.06.019.
[9] 傅隆生, 冯亚利, TOLA E, 等. 基于卷积神经网络的田间多簇猕猴桃图像识别方法[J]. 农业工程学报, 2018, 34(2): 205-211. DOI:10.11975/j.issn.1002-6819.2018.02.028.
[10] 肖逸群, 宋树祥, 夏海英. 基于多特征的快速行人检测方法及实现[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 61-67. DOI: 10.16088/j.issn.1001-6600.2019.04.007.
[11] 刘英璇, 伍锡如, 雪刚刚. 基于深度学习的道路交通标志多目标实时检测[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 96-106. DOI:10.16088/j.issn.1001-6600.2020.02.011.
[12] 朱玲. 基于K-means聚类算法分类的水果等级识别与应用[J]. 农机化研究, 2020, 42(8): 46-50. DOI:10.13427/ j.cnki.njyi.2020.08.009.
[13] ZHANG Y D, DONG Z C, CHEN X Q, et al. Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation[J]. Multimedia Tools and Applications, 2019, 78(3): 3613-3632. DOI:10.1007/s11042-017-5243-3.
[14] YU Y, ZHANG K L, YANG L, et al. Fruit detection for strawberry harvesting robot in non-structural environment based on Mask-RCNN[J]. Computers and Electronics in Agriculture, 2019, 163: 104846. DOI:10.1016/J.COMPAG.2019.06.001.
[15] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. DOI:10.1109/TPAMI.2016.2577031.
[16] SA I, GE Z Y, DAYOUB F, et al. DeepFruits: a fruit detection system using deep neural networks[J]. Sensors, 2016, 16(8): 1222. DOI: 10.3390/s16081222.
[17] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2016: 779-788. DOI:10.1109/CVPR.2016.91.
[18] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Los Alamitos, CA: IEEE Computer Society, 2017: 6517-6525. DOI:10.1109/CVPR.2017.690.
[19] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08)[2019-12-05]. https://arxiv.org/abs/1804.02767.
[20] 薛月菊, 黄宁, 涂淑琴, 等.未成熟芒果的改进 YOLOv2 识别方法[J]. 农业工程学报, 2018, 34(7): 173-179. DOI: 10.11975/j.issn.1002-6819.2018.07.022.
[21] TIAN Y N, YANG G D, WANG Z, et al. Apple detection during different growth stages in orchards using the improved YOLO-V3 model[J]. Computers and Electronics in Agriculture, 2019, 157: 417-426. DOI: 10.1016/j.compag.2019.01.012.
[1] ZHANG Mingyu,ZHAO Meng,CAI Fuhong,LIANG Yu,WANG Xinhong. Wave Power Prediction Based on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 25-32.
[2] LI Weiyong, LIU Bin, ZHANG Wei, CHEN Yunfang. An Automatic Summarization Model Based on Deep Learning for Chinese [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 51-63.
[3] LIU Yingxuan, WU Xiru, XUE Ganggang. Multi-target Real-time Detection for Road Traffic SignsBased on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 96-106.
[4] ZHANG Jinlei, LUO Yuling, FU Qiang. Predicting Financial Time Series Based on Gated Recurrent Unit Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 82-89.
[5] HUANG Liming,CHEN Weizheng,YAN Hongfei,CHEN Chong. A Stock Prediction Method Based on Recurrent Neural Network and Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 13-22.
[6] YUE Tianchi, ZHANG Shaowu, YANG Liang, LIN Hongfei, YU Kai. Stance Detection Method Based on Two-Stage Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 42-49.
[7] YU Chuanming,LI Haonan,AN Lu. Analysis of Text Emotion Cause Based on Multi-task Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 50-61.
[8] WANG Qi,QIU Jiahui,RUAN Tong,GAO Daqi,GAO Ju. Recurrent Capsule Network for Clinical Relation Extraction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 80-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jianmin, WEI Jia, SHOU Yanfang. Comprehensive Evaluation of Urban Road Traffic Operation StatusBased on Game Theory-Cloud Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 1 -10 .
[2] ZHANG Canlong, LI Yanru, LI Zhixin, WANG Zhiwen. Block Target Tracking Based on Kernel Correlation Filter and Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 12 -23 .
[3] XU Lunhui, CAO Yuchao, LIN Peiqun. Location and Dispatching of Multiple Emergency Materials Center Based on Fusion Immune Optimization and Genetic Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 1 -13 .
[4] HU Jinming, WEI Duqu. Research on Generalized Sychronization of Fractional-order PMSM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 14 -20 .
[5] ZHU Yongjian, LUO Jian, QIN Yunbai, QIN Guofeng, TANG Chuliu. A Method for Detecting Metal Surface Defects Based on Photometric Stereo and Series Expansion Methods[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 21 -31 .
[6] ZHANG Ruchang, QIU Jie, WANG Mingtang, CHEN Qingfeng. Classification of Protein 3D Structure Based on Adaptive Local Features[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 40 -50 .
[7] CHEN Dong, HU Kui. Cover Gorenstein AC-flat Dimensions[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 51 -55 .
[8] ZUO Jiabin, YUN Yongzhen. Anti-periodic Boundary Value Problem for a Class of Fractional Differential Equations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 56 -64 .
[9] WANG Yue, YE Hongyan, LEI Jun, SUO Hongmin. Infinitely Many Classical Solutions for Kirchhoff Type Problem with Linear Term[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 65 -73 .
[10] HUANG Chunxian, ZHOU Xiaoliang. Bifurcation Analysis of an SIRS Epidemic Model with Graded Cure and Incomplete Recovery Rates[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 74 -81 .