Journal of Guangxi Normal University(Natural Science Edition) ›› 2020, Vol. 38 ›› Issue (4): 82-91.doi: 10.16088/j.issn.1001-6600.2020.04.010
Previous Articles Next Articles
LAN Haifeng, XIAO Feiyan*, ZHANG Gengen, ZHU Rui
CLC Number:
[1] AVAZZADEH Z, RIZI Z B, GHAINI F M M, et al. A numerical solution of nonlinear parabolic-type Volterra partial integro-differential equations using radial basis functions[J].Engineering Analysis with Boundary Elements,2012,36(5): 881-893. DOI:10.1016/j.enganabound.2011.09.013. [2] DEHGHAN M, SHOKRI A. A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions[J].Mathematics and Computers in Simulation, 2008, 79(3): 700-715.DOI:10.1016/j.matcom.2008.04.018. [3] DEHGHAN M, SHOKRI A. A numerical method for two-dimensional Schrödinger equation using collocation and radial basis functions[J].Computers and Mathematics with Applications, 2007, 54(1): 136-146. DOI:10.1016/j.camwa.2007.01.038. [4] DEHGHAN M, SHOKRI A. Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions[J].Journal of Computational and Applied Mathematics, 2009, 230(2): 400-410. DOI: 10.1016/j.cam.2008.12.011. [5] SHU C, DING H, ZHAO N. Numerical comparison of least square-based finite-difference (LSFD) and radial basis function-based finite-difference (RBFFD) methods[J].Computers & Mathematics with Applications,2006,51(8): 1297-1310.DOI: 10.1016/j.camwa.2006.04.015. [6] TANG T. A finite difference scheme for partial integro-differential equations with a weakly singular kernel[J].Applied Numerical Mathematics, 1993, 11(4): 309-319. DOI:10.1016/0168-9274(93)90012-g. [7] FAKHAR-IZADI F, DEHGHAN M. Fully spectral collocation method for nonlinear parabolic partial integro-differential equations[J]. Applied Numerical Mathematics, 2018, 123: 99-120. DOI:10.1016/j.apnum.2017.08.007. [8] FUJIWARA H. High-accurate numerical method for integral equations of the first kind under multiple-precision arithmetic[J]. Theoretical and Applied Mechanics Japan, 2003, 52: 193-203. DOI:10.11345/nctam.52.193. [9] JIANG Y J. On spectral methods for Volterra-type integro-differential equations[J].Journal of Computational and Applied Mathematics, 2009, 230(2): 333-340. DOI:10.1016/j.cam.2008.12.001. [10]TANG T. A note on collocation methods for Volterra integro-differential equations with weakly singular kernels[J]. IMA Journal of Numerical Analysis,1993, 13(1): 93-99. DOI:10.1093/imanum/13.1.93. [11]WEI Y, CHEN Y. Convergence analysis of the spectral methods for weakly singular Volterra integro-differential equations with smooth solutions[J]. Advances in Applied Mathematics and Mechanics, 2012, 4(1): 1-20. DOI:10.4208/aamm.10-m1055. [12]BAKAEV N Y. On the Galerkin finite element approximations to multi-dimensional differential and integro-differential parabolic equations[J]. BIT Numerical Mathematics, 1997, 37(2): 237-255. DOI:10.1007/bf02510212. [13]CHEN C, THOMéE V, WAHLBIN L B. Finite element approximation of a parabolic integro-differential equation with a weaklysingular kernel[J].Mathematics of Computation, 1992, 58(198): 587-602. DOI:10.1090/S0025-5718-1992-1122059-2. [14]LI W, DA X. Finite central difference/finite element approximations for parabolic integro-differential equations[J].Computing, 2010, 90(3/4): 89-111. DOI:10.1007/s00607-010-0105-0. [15]MA J. Finite element methods for partial Volterra integro-differential equations on two-dimensional unbounded spatial domains[J]. Applied Mathematics and Computation, 2007, 186(1): 598-609. DOI:10.1016/j.amc.2006.08.004. [16]THOMÉE V, ZHANG N. Error estimates for semidiscrete finite element methods for parabolic integro-differential equations[J]. Mathematics of Computation, 1989, 53(187): 121-139. DOI:10.1090/s0025-5718-1989-0969493-9. [17]SHAMPINE L F, SOMMEIJER B P, VERWER J G. IRKC: An IMEX solver for stiff diffusion-reaction PDEs[J].Journal of Computational and Applied Mathematics, 2006, 196(2): 485-497. DOI:10.1016/j.cam.2005.09.014. [18]HUNDSDORFER W, RUUTH S J. IMEX extensions of linear multistep methods with general monotonicity and boundedness properties[J].Journal of Computational Physics, 2007, 225(2): 2016-2042. DOI:10.1016/j.jcp.2007.03.003. [19]XIAO A, ZHANG G, ZHOU J. Implicit-explicit time discretization coupled with finite element methods for delayed predator-prey competition reaction-diffusion system[J].Computers & Mathematics with Applications,2016,71(10): 2106-2123.DOI: 10.1016/j.camwa.2016.04.003. [20]ZHANG G, XIAO A. Stability and convergence analysis of implicit-explicit one-leg methods for stiff delay differential equations[J]. International Journal of Computer Mathematics, 2016, 93(11): 1964-1983. DOI:10.1080/00207160.2015.1080359. [21]ZHANG G, XIAO A, ZHOU J. Implicit-explicit multistep finite-element methods for nonlinear convection-diffusion-reaction equations with time delay[J].International Journal of Computer Mathematics,2018,95(12): 2496-2510.DOI: 10.1080/00207160.2017.1408802. [22]LI L, ZHOU B, CHEN X, et. al. Convergence and stability of compact finite difference method for nonlinear time fractional reaction-diffusion equations with delay[J].Applied Mathematics and Computation, 2018, 337: 144-152. DOI: 10.1016/j.amc.2018.04.057. [23]ZHANG Q, MEI M, ZHANG C. Higher-order linearized multistep finite difference methods for non-Fickian delay reaction-diffusin equations[J].International Journal of Numerical Analysis and Modeling,2017,14(1): 1-19. |
[1] | JIANG Chao-long, LUO Ting, SUN Jian-qiang. Multi-symplectic Method of the Fifth Order Saturated Nonlinear Schrödinger Equation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 71-77. |
|