Journal of Guangxi Normal University(Natural Science Edition) ›› 2016, Vol. 34 ›› Issue (2): 74-80.doi: 10.16088/j.issn.1001-6600.2016.02.011

Previous Articles     Next Articles

Analysis of Product Public Opinion Based on PPOG Semantic Grammar

CAO Yang1, TANG Suqin1, FANG Fang2, ZHAO Hongyuan3, CAO Cungen2   

  1. 1. Guangxi Key Lab of Multi-source Information Mining & Security, Guangxi Normal University, Guilin Guangxi 541004,China;
    2. Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academyof Sciences, Beijing 100190, China;
    3. College of Applied Mathematical and Physical Science, Beijing Universityof Technology,Beijing 100124, China
  • Received:2015-11-15 Online:2016-06-25 Published:2018-09-14

Abstract: Product quality and safety have been viewed as crucial factors to both enterprise development and customer concern. At present, keyword-based methods are the primary analysis method of product-relevant public opinion. However, due to the lack of a deep analysis of public opinions, numerous wrong results are produced. In this paper, a thematic structure of product public opinions is proposed and a product-public opinion grammar, called PPOG, is designed to analyze mircro-blogs. Through comprehensive experiments with the use of micro-blogs, it is believed that the PPOG-based analysis method of public opinion has a promising application prospect.

Key words: product quality, product public opinion grammar, product public opinion analysis

CLC Number: 

  • TP391
[1] 李雯静,许鑫,陈正权. 网络舆情指标体系设计与分析[J]. 情报科学, 2009,27(7):986-991.
[2] 郑魁,疏学明,袁宏永. 网络舆情热点信息自动发现方法[J]. 计算机工程, 2010, 36(3):4-6.
[3] 柳虹,徐金华. 网络舆情热点发现研究[J].科技通报, 2011, 27(3):421-425. DOI:10.13774/j.cnki.kjtb.2011.03.017.
[4] 王兰成. 网络舆情分析技术[M]. 北京:国防工业出版社,2014.
[5] 郭林宇,戚亚梅,李艳,等. 农产品质量安全网络舆情监测工作的几点思考[J].中国食物与营养, 2012, 18(12):5-7.
[6] 张庆民,吴春梅,刘小峰. 产品质量安全网络舆情下的企业网络声誉研究[J]. 华东经济管理, 2014,28(4):98-103. DOI:10.3969/j.issn.1007-5097.2014.04.019.
[7] SRIRAM B, FUHRY D, DEMIR E, et al. Short text classification in Twitter to improve information filtering[C]// Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM, 2010:841-842. DOI:10.1145/1835449.1835643.
[8] 夏雨禾. 微博互动的结构与机制:基于对新浪微博的实证研究[J]. 新闻与传播研究,2010,18(4):60-69.
[9] 侯圣峦,刘磊,曹存根. 基于语义文法的网络舆情精准分析方法研究[J]. 计算机科学, 2014,41(10):225-231,237. DOI:10.11896/j.issn.1002-137X.2014.10.048.
[10] 侯圣峦,基于语义文法的网络舆情精准分析方法研究 [D]. 北京:北京工业大学,2014.
[11] 国家统计局.统计用产品分类目录[M]. 北京:国家统计出版社,2010.
[12] 温敬和.LL(1)文法及分析表的自动构造[J]. 上海第二工业大学学报,2001,18(2):38-44.
[1] ZHANG Canlong, LI Yanru, LI Zhixin, WANG Zhiwen. Block Target Tracking Based on Kernel Correlation Filter and Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 12-23.
[2] WANG Jian, ZHENG Qifan, LI Chao, SHI Jing. Remote Supervision Relationship Extraction Based on Encoder and Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 53-60.
[3] XIAO Yiqun, SONG Shuxiang, XIA Haiying. Fast Pedestrian Detection Method Based on Multi-Features    and Implementation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 61-67.
[4] WANG Xun, LI Tinghui, PAN Xiao, TIAN Yu. Image Segmentation Method Based on Improved Fuzzy C-means Clustering and Otsu Maximum Variance [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 68-73.
[5] CHEN Feng,MENG Zuqiang. Topic Discovery in Microblog Based on BTM and Weighting K-Means [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 71-78.
[6] ZHANG Suiyuan, XUE Yuanhai, YU Xiaoming, LIU Yue, CHENG Xueqi. Research on Short Summary Generation of Multi-Document [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 60-74.
[7] SUN Ronghai, SHI Linfu, HUANG Liyan, TANG Zhenjun, YU Chunqiang. Reversible Data Hiding Based on Image Interpolation and Reference Matrix [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 90-104.
[8] ZHU Yongjian, PENG Ke, QI Guangwen, XIA Haiying, SONG Shuxiang. Defect Detection of Solar Panel Based on Machine Vision [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 105-112.
[9] WANG Qi,QIU Jiahui,RUAN Tong,GAO Daqi,GAO Ju. Recurrent Capsule Network for Clinical Relation Extraction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 80-88.
[10] WU Wenya,CHEN Yufeng,XU Jin’an,ZHANG Yujie. High-level Semantic Attention-based Convolutional Neural Networks for Chinese Relation Extraction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 32-41.
[11] YUE Tianchi, ZHANG Shaowu, YANG Liang, LIN Hongfei, YU Kai. Stance Detection Method Based on Two-Stage Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 42-49.
[12] YU Chuanming,LI Haonan,AN Lu. Analysis of Text Emotion Cause Based on Multi-task Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 50-61.
[13] LIN Yuan, LIU Haifeng, LIN Hongfei, XU Kan. Group Ranking Methods with Loss Function Incorporation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 62-70.
[14] WAN Fucheng,MA Ning,HE Xiangzhen. Tibetan Information Extraction Technology Integrated with Event Feature and Semantic Role Labeling [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 18-23.
[15] XIA Haiying,LIU Weitao,ZHU Yongjian. An Improved Fast SUSAN Chessboard Corner Detection Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 44-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!