Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (5): 207-217.doi: 10.16088/j.issn.1001-6600.2024112502

• Ecology and Environmental Science Research • Previous Articles     Next Articles

Study on Intestinal Microorganisms of Three Freshwater Snails in Lijiang River

PANG Lizhen1,2, DU Lina1,2 *, WANG Bo3*   

  1. 1. College of Life Sciences, Guangxi Normal University, Guilin Guangxi 541006, China;
    2. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    3. Guangxi Lujin Ecological Technology Co., Ltd, Nanning Guangxi 530000, China
  • Received:2024-11-25 Revised:2025-01-07 Online:2025-09-05 Published:2025-08-05

Abstract: Semisulcospira gredleri, Viviparus tricinctus and Sinotaia limnophila are all important economic freshwater snail species, which play significant ecological roles in the restoration of water ecology. The gut microbes of aquatic animals play a crucial role in food digestion and nutrient absorption. Therefore, in this study, 16S rDNA high-throughput sequencing was use to compare the composition and function of gut microbiota in three species of freshwater snails from the Lijiang River. The results showed that at the phylum level, the common dominant microorganisms in the three groups were Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria. Proteobacteria was the most abundant bacteria in both groups. At the genus level, the common dominant bacteria were Aeromonas, Acinetobacter, Pseudomonas. In terms of community diversity, there was no significant difference between Semisulcospira gredleri and Viviparus tricinctus (P>0.05), while there was a highly significant difference between Sinotaia limnophila and both Semisulcospira gredleri and Viviparus tricinctus (P<0.01). Based on PICRUSt analysis, the intestinal microbiota of three species of snails was predicted to be mainly involved in metabolic processes, including amino acid metabolism, metabolism of cofactors and vitamins, xenobiotics biodegradation and metabolism, metabolism of terpenoids and polyketides, lipid metabolism, metabolism of other amino acids.

Key words: intestinal flora, 16S rDNA, high-throughput sequencing, freshwater snail, functional prediction

CLC Number:  S917.4
[1] GALLO B D, FARRELL J M, LEYDET B F. Fish gut microbiome: a primer to an emerging discipline in the fisheries sciences[J]. Fisheries, 2020, 45(5): 271-282. DOI: 10.1002/fsh.10379.
[2] ARAI Y, SHOJI H, SANTOSA I, et al. Effects of fetal growth restriction on postnatal gut microbiota in a rat model[J]. Journal of Pediatric Gastroenterology and Nutrition, 2023, 77(2): e42-e47. DOI: 10.1097/MPG.0000000000003805.
[3] ZYOUD S H, SHAKHSHIR M, ABUSHANAB A S, et al. Unveiling the hidden world of gut health: exploring cutting-edge research through visualizing randomized controlled trials on the gut microbiota[J]. World Journal of Clinical Cases, 2023, 11(26): 6132-6146. DOI: 10.12998/wjcc.v11.i26.6132.
[4] 管强, 刘吉平, 武海涛, 等. 中国自然湿地螺类生态学研究进展[J]. 生态学报, 2016, 36(9): 2471-2481. DOI: 10.5846/stxb201411162267.
[5] 毕鼎淇, 陈会波, 李欣阳,等. 基于文献计量学的螺类肠道菌群研究现状及热点分析[J]. 中国血吸虫病防治杂志, 2018, 30(5): 571-574. DOI: 10.16250/j.32.1374.2018189.
[6] BÄCKHED F, LEY R E, SONNENBURG J L, et al. Host-bacterial mutualism in the human intestine[J]. Science, 2005, 307(5717): 1915-1920. DOI: 10.1126/science.1104816.
[7] FAN P X, BIAN B L, TENG L, et al. Host genetic effects upon the early gut microbiota in a bovine model with graduated spectrum of genetic variation[J]. The ISME Journal, 2020, 14(1): 302-317. DOI: 10.1038/s41396-019-0529-2.
[8] ZHOU K Q, QIN J Q, PANG H F, et al. Comparison of the composition and function of gut microbes between adult and juvenile Cipangopaludina chinensis in the rice snail system[J]. PeerJ, 2022, 10(5): e13042. DOI: 10.7717/peerj.13042.
[9] HUANG G P, WANG L, LI J, et al. Seasonal shift of the gut microbiome synchronizes host peripheral circadian rhythm for physiological adaptation to a low-fat diet in the giant panda[J]. Cell Reports, 2022, 38(3): 110203. DOI: 10.1016/j.celrep.2021.110203.
[10] GUTIERREZ LOPEZ D E, LASHINGER L M, WEINSTOCK G M, et al. Circadian rhythms and the gut microbiome synchronize the host's metabolic response to diet[J]. Cell Metabolism, 2021, 33(5): 873-887. DOI: 10.1016/j.cmet.2021.03.015.
[11] CHEN L, LI S X, XIAO Q,et al. Composition and diversity of gut microbiota in Pomacea canaliculata in sexes and between developmental stages[J]. BMC Microbiology, 2021, 21(1): 200. DOI: 10.1186/s12866-021-02259-2.
[12] 胡宗福, 常杰, 佟庆, 等. 高通量测序方法分析两种草食性淡水螺肠道菌群多样性[J]. 生物工程学报, 2020, 36(12): 2622-2634. DOI: 10.13345/j.cjb.200322.
[13] LI L H, LV S, LU Y, et al. Spatial structure of the microbiome in the gut of Pomacea canaliculata[J]. BMC Microbiology, 2019, 19(1): 273. DOI: 10.1186/s12866-019-1661-x.
[14] LINDSAY E C, METCALFE N B, LLEWELLYN M S, et al. The potential role of the gut microbiota in shaping host energetics and metabolic rate[J]. Journal of Animal Ecology, 2020, 89(11): 2415-2426. DOI: 10.1111/1365-2656.13327.
[15] KAUR H, ALI S A, YAN F, et al. Interactions between the gut microbiota-derived functional factors and intestinal epithelial cells-implication in the microbiota-host mutualism[J]. Frontiers in Immunology, 2022(13): 1006081. DOI: 10.3389/fimmu.2022.1006081.
[16] XU B, XU W J, LI J J, et al. Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation[J]. BMC Genomics, 2015, 16(1): 174. DOI: 10.1186/s12864-015-1378-7.
[17] 梁琍, 姚俊杰, 周路, 等. 锦江河螺类资源调查[J]. 铜仁学院学报, 2012, 14(6): 139-143. DOI: 10.3969/j.issn.1673-9639.2012.06.035.
[18] 梁敏, 陶虎春, 倪晋仁, 等. 石田螺处理城市剩余污泥试验[J]. 环境科学研究, 2010, 23(9): 1180-1184.
[19] GUO M J, WU F H, HAO G G,et al. Bacillus subtilis improves immunity and disease resistance in rabbits[J]. Frontiers in Immunology, 2017, 8: 354. DOI: 10.3389/fimmu.2017.00354.
[20] GAIKWAD S S, SHOUCHE Y S, GADE W N, et al. Deep sequencing reveals highly variable gut microbial composition of invasive fish Mossambicus Tilapia (Oreochromis mossambicus) collected from two different habitats[J]. Indian Journal of Microbiology, 2017, 57(2): 235-240. DOI: 10.1007/s12088-017-0641-9.
[21] BANKERS L, DAHAN D, NEIMAN M, et al. Invasive freshwater snails form novel microbial relationships[J]. Evolutionary Applications, 2020, 14(3): 770-780. DOI: 10.1111/eva.13158.
[22] LI H, LI T T, BEASLEY D E, et al. Diet diversity is associated with beta but not alpha diversity of pika gut microbiota[J]. Frontiers in Microbiology, 2016, 7: 1169. DOI: 10.3389/fmicb.2016.01169.
[23] XUN W B, LIU Y P, LI W, et al. Specialized metabolic functions of keystone taxa sustain soil microbiome stability[J]. Microbiome, 2021, 9(1): 35. DOI: 10.1186/s40168-020-00985-9.
[24] HU Z F, CHEN X, CHANG J, et al. Compositional and predicted functional analysis of the gut microbiota of Radix auricularia (Linnaeus) via high-throughput illumina sequencing[J]. PeerJ, 2018, 6: e5537. DOI: 10.7717/peerj.5537. eCollection2018.
[25] HU Z F, TONG Q, CHANG J,et al. Gut bacterial communities in the freshwater snail Planorbella trivolvis and their modification by a non-herbivorous diet[J]. PeerJ, 2021, 9: e10716. DOI: 10.7717/peerj.10716.eCollection2021.
[26] RIMOLDI S, TEROVA G, ASCIONE C, et al. Next generation sequencing for gut microbiome characterization in rainbow trout (Oncorhynchus mykiss) fed animal by-product meals as an alternative to fishmeal protein sources[J]. PLoS One, 2018, 13(3): e0193652. DOI: 10.1371/journal.pone.0193652.
[27] CHEN Y H, PENNER G B, LI M T, et al. Changes in bacterial diversity associated with epithelial tissue in the beef cow rumen during the transition to a high-grain diet[J]. Applied and Environmental Microbiology, 2011, 77(16): 5770-5781. DOI: 10.1128/AEM.00375-11.
[28] SHIN N R, WHON T W, BAE J W, et al. Proteobacteria: microbial signature of dysbiosis in gut microbiota[J]. Trends in Biotechnology, 2015, 33(9): 496-503. DOI: 10.1016/j.tibtech.2015.06.011.
[29] LI Y F, YANG N, LIANG X, et al. Elevated seawater temperatures decrease microbial diversity in the gut of Mytilus coruscus[J]. Frontiers in Physiology, 2018, 9: 839. DOI: 10.3389/fphys.2018.00839.
[30] WEXLER A G, GOODMAN A L. An insider's perspective: Bacteroides as a window into the microbiome[J]. Nature Microbiology, 2017, 2:17026. DOI: 10.1038/nmicrobiol.2017.26.
[31] JIANG Y, XIE C X, YANG G M, et al. Cellulase-producing bacteria of Aeromonas are dominant and indigenous in the gut of Ctenopharyngodon idellus (Valenciennes)[J]. Aquaculture Research, 2011, 42(4): 499-505. DOI: 10.1111/j.1365-2109.2010.02645.x.
[32] WU Z Q, JIANG C, LING F, et al. Effects of dietary supplementation of intestinal autochthonous bacteria on the innate immunity and disease resistance of grass carp (Ctenopharyngodon idellus)[J]. Aquaculture, 2015, 438: 105-114. DOI: 10.1016/j.aquaculture.2014.12.041.
[33] TSUCHIYA C, SAKATA T, SUGITA H,et al. Novel ecological niche of Cetobacterium somerae an anaerobic bacterium in the intestinal tracts of freshwater fish[J]. Letters in Applied Microbiology, 2008, 46(1): 43-48. DOI: 10.1111/j.1472-765X.2007.02258.x.
[34] TANAKA R, OOTSUBO M, SAWABE T, et al. Biodiversity and in situ abundance of gut microflora of abalone (Haliotis discus Hannai) determined by culture-independent techniques[J]. Aquaculture, 2004, 241(1/2/3/4): 453-463. DOI: 10.1016/j.aquaculture.2004.08.032.
[35] HOLBEN W E, WILLIAMS P, GILBERT M A, et al. Phylogenetic analysis of intestinal microflora indicates a novel Mycoplasma phylotype in farmed and wild salmon[J]. Microbial Ecology, 2002, 44(2): 175-185. DOI: 10.1007/s00248-002-1011-6.
[36] RAZIN S, YOGEV D, NAOT Y, et al. Molecular biology and pathogenicity of mycoplasmas[J]. Microbiology and Molecular Biology Reviews: MMBR, 1998, 62(4): 1094-1156. DOI: 10.1128/MMBR.62.4.1094-1156.1998.
[37] SOMMER F, BÄCKHED F. The gut microbiota:masters of host development and physiology[J]. Nature Reviews Microbiology, 2013, 11(4): 227-238. DOI: 10.1038/nrmicro2974.
[38] JOYNSON R, PRITCHARD L, OSEMWEKHA E, et al. Metagenomic analysis of the gut microbiome of the common black slug Arion ater in search of novel lignocellulose degrading enzymes[J]. Frontiers Microbiology, 2017, 8: 2181. DOI: 10.3389/fmicb.2017.02181.
[39] YANG Y, YANG J, WU W M, et al. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. role of gut microorganisms[J]. Environmental Science & Technology, 2015, 49(20): 12087-12093. DOI: 10.1021/acs.est.5b02663.
[1] SUN Yue, DAI Qiuzhong, JIANG Guitao, HUANG Xuan, LI Chuang, DENG Ping, SUN Tao. Effect of Dietary Branched-chain Amino Acid Ratio on Intestinal Flora of 28-63 Days Old Youxian Duck [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 242-250.
[2] XIAO Miyun, RUAN Chujin, CHEN Shoukun, LIU Yuhua, LU Zujun. Isolation and Identification of a BacteriumProducing Natural Blue Pigment [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 131-138.
[3] ZHANG Xiaomin, LIN Yong, BIN Shiyu, YU Yanling,ZENG Lan, ZHONG Dandan, ZHANG Yongde. Phylogeny of Macrobrachium Species Using Mitochondrial16S Ribosomal DNA [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 133-140.
[4] WANG Pei, CAO Jian-hua, SONG De-gui, GU Lan-tao, DONG Yan-ling. Screening and Identification of a Strain of Hydantoinase-producing Microorganism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(1): 119-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHONG Qiao, CHEN Shenglong, TANG Congcong. Hydrogel Technology for Microalgae Collection: Status Overview, Challenges and Development Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 16 -29 .
[2] SHI Huilu, MO Yanhua, LUO Haiyu, MA Jiangming. Inhibitory Activity of Ethyl Acetate Extracts of Loropetalum chinense against Pathogens[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(1): 1 -8 .
[3] HE Qing, LI Dong, LUO Siyuan, HE Yudong, LI Biao, WANG Qiang. Research Progress in Ultra-wideband Rydberg Atomic Antenna Technology[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 1 -19 .
[4] HUANG Renhui, ZHANG Ruifeng, WEN Xiaohao, BI Jinjie, HUANG Shoulin, LI Tinghui. Complex-value Covariance-based Convolutional Neural Network for Decoding Motor Imagery-based EEG Signals[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 43 -56 .
[5] TIAN Sheng, XIONG Chenyin, LONG Anyang. Point Cloud Classification Method of Urban Roads Based on Improved PointNet++[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 1 -14 .
[6] LI Zongxiao, ZHANG Jian, LUO Xinyue, ZHAO Yifei, LU Fei. Research on Arrival Trajectory Prediction Based on K-means and Adam-LSTM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 15 -23 .
[7] SONG Mingkai, ZHU Chengjie. Research on Fault Location of Distribution Network Based on H-WOA-GWO and Region Correction Strategies[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 24 -37 .
[8] HAN Shuo, JIANG Linfeng, YANG Jianbin. Attention-based PINNs Method for Solving Saint-Venant Equations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 58 -68 .
[9] LI Zhixin, KUANG Wenlan. Fine-grained Image Classification Combining Adaptive Spatial Mutual Attention and Feature Pair Integration Discrimination[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 69 -82 .
[10] SHI Tianyi, NAN Xinyuan, GUO Xiangyu, ZHAO Pu, CAI Xin. Improved ConvNeXt-based Algorithm for Apple Leaf Disease Classification[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 83 -96 .