Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (5): 218-232.doi: 10.16088/j.issn.1001-6600.2024101702
• Ecology and Environmental Science Research • Previous Articles Next Articles
WAN Ailing1, LIAO Chaolian1, ZHANG Tianxiang1, CHEN Yulin1, YE Jiangxia2, ZHOU Ruliang1*
| [1] XU C G, MCDOWELL N G, FISHER R A, et al. Increasing impacts of extreme droughts on vegetation productivity under climate change[J]. Nature Climate Change, 2019, 9(12): 948-953. DOI: 10.1038/s41558-019-0630-6. [2] ZHANG Y C, PIAO S L, SUN Y, et al. Future reversal of warming-enhanced vegetation productivity in the Northern Hemisphere[J]. Nature Climate Change, 2022, 12(6): 581-586. DOI: 10.1038/s41558-022-01374-w. [3] HUANG K, XIA J Y, WANG Y P, et al. Enhanced peak growth of global vegetation and its key mechanisms[J]. Nature Ecology & Evolution, 2018, 2(12): 1897-1905. DOI: 10.1038/s41559-018-0714-0. [4] YAO J Y, LIU H P, HUANG J P, et al. Accelerated dryland expansion regulates future variability in dryland gross primary production[J]. Nature Communications, 2020, 11(1): 1665. DOI: 10.1038/s41467-020-15515-2. [5] SCHENUIT F. Staging science: dramaturgical politics of the IPCC's special report on 1.5 ℃[J]. Environmental Science & Policy, 2023, 139: 166-176. DOI: 10.1016/j.envsci.2022.10.014. [6] DING J Z, WANG T, WANG Y Y, et al. New understanding of the response of permafrost carbon cycling to climate warming[J]. Science Bulletin, 2022, 67(13): 1322-1325. DOI: 10.1016/j.scib.2022.05.022. [7] 徐勇, 盘钰春, 邹滨, 等. 定量评估气候变化对长江中下游地区植被GPPGS变化的影响[J]. 环境科学, 2024, 45(3): 1615-1628. DOI: 10.13227/j.hjkx.202304152. [8] 徐勇, 赵纯, 郭振东, 等. 中国八大经济区GPP变化及影响因子协同机制[J]. 中国环境科学, 2023, 43(1): 477-487. DOI: 10.19674/j.cnki.issn1000-6923.2023.0009. [9] 邱博, 郭维栋. 叶绿素荧光遥感在陆地生态系统碳循环和陆气相互作用中的应用研究进展[J]. 大气科学学报, 2022, 45(6): 801-814. DOI: 10.13878/j.cnki.dqkxxb.20220507005. [10] PIAO S L, SITCH S, CIAIS P, et al. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends[J]. Global Change Biology, 2013, 19(7): 2117-2132. DOI: 10.1111/gcb.12187. [11] WANG Y H, XIAO J F, LI X, et al. Global evidence on the asymmetric response of gross primary productivity to interannual precipitation changes[J]. Science of the Total Environment, 2022, 814: 152786. DOI: 10.1016/j.scitotenv.2021.152786. [12] LIU Y C, YU G R, WANG Q F, et al. How temperature, precipitation and stand age control the biomass carbon density of global mature forests[J]. Global Ecology and Biogeography, 2014, 23(3): 323-333. DOI: 10.1111/geb.12113. [13] 曹玉娟, 宋振华, 武志涛, 等. 不同数据集的1982—2017年中国总初级生产力的时空动态[J]. 应用生态学报, 2022, 33(10): 2644-2652. DOI: 10.13287/j.1001-9332.202210.027. [14] 姚炳楠, 陈报章, 车明亮. 鄱阳湖流域植被总初级生产力时空变化特征及其气候驱动因子分析[J]. 植物学报, 2016, 51(5): 639-649. [15] 张世喆, 朱秀芳, 刘婷婷, 等. 气候变化下中国不同植被区总初级生产力对干旱的响应[J]. 生态学报, 2022, 42(8): 3429-3440. DOI: 10.5846/stxb202010232707. [16] 平晓莹, 马俊, 刘淼, 等. 基于VPM模型的长白山自然保护区植被总初级生产力动态变化[J]. 应用生态学报, 2019, 30(5): 1589-1598. DOI: 10.13287/j.1001-9332.201905.029. [17] 冯思齐. 云南省森林GPP遥感估算及时空特征变化分析[D]. 昆明: 昆明理工大学, 2023. DOI: 10.27200/d.cnki.gkmlu.2023.001792. [18] 黄立成, 周远洋, 周起超, 等. 云南程海浮游植物初级生产力的时空变化及其影响因子[J]. 湖泊科学, 2019, 31(5): 1424-1436. DOI: 10.18307/2019.0508. [19] YAO J Y, LIU H P, HUANG J P, et al. Accelerated dryland expansion regulates future variability in dryland gross primary production[J]. Nature Communications, 2020, 11(1): 1665. DOI: 10.1038/s41467-020-15515-2. [20] LIU Y, LIU H H, CHEN Y, et al. Quantifying the contributions of climate change and human activities to vegetation dynamic in China based on multiple indices[J]. Science of the Total Environment, 2022, 838: 156553. DOI: 10.1016/j.scitotenv.2022.156553. [21] CHEN X J, MO X G, HU S, et al. Contributions of climate change and human activities to ET and GPP trends over North China Plain from 2000 to 2014[J]. Journal of Geographical Sciences, 2017, 27(6): 661-680.. DOI: 10.1007/s11442-017-1399-z. [22] SEN P K. Estimates of the regression coefficient based on Kendall's tau[J]. Journal of the American Statistical Association, 1968, 63(324): 1379-1389. DOI: 10.1080/01621459.1968.10480934. [23] 徐勇, 黄雯婷, 窦世卿, 等. 2000—2020年西南地区植被NDVI对气候变化和人类活动响应特征[J]. 环境科学, 2022, 43(6): 3230-3240. DOI: 10.13227/j.hjkx.202108107. [24] 熊小菊, 廖春贵, 胡宝清, 等. 基于MODIS的广西植被NPP时空分异及驱动力分析[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 187-195. DOI: 10.16088/j.issn.1001-6600.2019.03.022. [25] 崔利芳, 王伦澈, 屈赛, 等. 气温、降水量和人类活动对长江流域植被NDVI的影响[J]. 地球科学, 2020, 45(6): 1905-1917. [26] ZHOU H, LIU Y B. SPI based meteorological drought assessment over a humid basin: effects of processing schemes[J]. Water, 2016, 8(9): 373. DOI: 10.3390/w8090373. [27] LI J Y. Responses of vegetation NDVI to climate change and land use in Ordos City, North China[J]. Applied Sciences, 2022, 12(14): 7288. DOI: 10.3390/app12147288. [28] 谢舒笛, 莫兴国, 胡实, 等. 三北防护林工程区植被绿度对温度和降水的响应[J]. 地理研究, 2020, 39(1):152-165. DOI: 10.11821/dlyj020181071. [29] 吴玉鸣, 李建霞. 通径分析在我国粮食生产相关研究中的应用[J]. 广西师范大学学报(自然科学版), 2003, 21(3): 95-99. DOI: 10.3969/j.issn.1001-6600.2003.03.023. [30] 李双成, 蔡运龙. 地理尺度转换若干问题的初步探讨[J]. 地理研究, 2005, 24(1): 11-18. DOI: 10.3321/j.issn:1000-0585.2005.01.002. [31] 杜家菊, 陈志伟. 使用SPSS线性回归实现通径分析的方法[J]. 生物学通报, 2010, 45(2): 4-6. DOI: 10.3969/j.issn.0006-3193.2010.02.002. [32] 朱燕琴, 赵志斌, 齐广平, 等. 黄土丘陵区坡面产流产沙的影响因素分析[J]. 干旱区资源与环境, 2020, 34(8): 173-178. DOI: 10.13448/j.cnki.jalre.2020.227. [33] 徐勇, 郑志威, 戴强玉, 等. 顾及时滞效应的西南地区植被NPP变化归因分析[J]. 农业工程学报, 2022, 38(9): 297-305, 339. DOI: 10.11975/j.issn.1002-6819.2022.09.033. [34] 程建刚, 解明恩. 近50年云南区域气候变化特征分析[J]. 地理科学进展, 2008(5): 19-26. DOI: 10.1007/s10499-007-9164-4. [35] 牛剑龙. 云南省植被覆盖动态变化与生态环境效应分析[D]. 昆明: 昆明理工大学, 2023. DOI: 10.27200/d.cnki.gkmlu.2023.001643. [36] 黄中艳. 2005年云南农业气候及其对农业影响评价[J]. 西南农业学报, 2006, 19(S1): 277-280. [37] 李美丽, 尹礼昌, 张园, 等. 基于MODIS-EVI的西南地区植被覆盖时空变化及驱动因素研究[J]. 生态学报, 2021, 41(3): 1138-1147. DOI: 10.5846/stxb201907101451. [38] 徐虹, 程晋昕, 何雨芩, 等. 气候变化和人类活动对云南省植被净初级生产力的影响[J]. 高原气象, 2024, 43(4): 1064-1075. DOI: 10.7522/j.issn.1000-0534.2023.00047. [39] 斐文明,葛峰,张慧,等.基于净初级生产力的黑龙江生物多样性维护功能重要性评价[J].东北师大学报(自然科学版), 2024, 56(2): 140-149. DOI: 10.1613/j.cnki.dslkxb202304090001. [40] 刘涛, 寇卫利. 基于遥感的西双版纳近20年植被覆盖率时空变化分析[J]. 南方农业, 2024, 18(15): 126-131. DOI: 10.19415/j.cnki.1673-890x.2024.15.026. [41] CONGALTON R G. A review of assessing the accuracy of classifications of remotely sensed data[J]. Remote Sensing of Environment, 1991, 37(1): 35-46. DOI: 10.1016/0034-4257(91)90048-B. [42] 王永红, 鲁恒. 2001-2018年云南省植被变化及驱动力[J]. 山地学报, 2022, 40(4): 531-541. DOI: 10.16089/j.cnki.1008-2786.000691. [43] WEN Z F, WU S J, CHEN J L, et al. NDVI indicated long-term interannual changes in vegetation activities and their responses to climatic and anthropogenic factors in the Three Gorges Reservoir Region, China[J]. Science of the Total Environment, 2017, 574: 947-959. DOI: 10.1016/j.scitotenv.2016.09.049. [44] 罗健梅, 阿布都热合曼·哈力克, 段越帆, 等. 艾比湖流域植被NPP时空演变特征及其驱动因素分析[J]. 生态学报, 2025, 45(1): 182-196. DOI: 10.20103/j.stxb.202401240224. [45] 曾觉民. 云南自然森林分类系统及地理分布研究[J]. 西南林业大学学报(自然科学), 2018, 38(6): 1-18, 231. DOI: 10.11929/j.issn.2095-1914.2018.06.001. [46] 姜炎彬, 范苗, 张扬建. 短期增温对藏北高寒草甸植物群落特征的影响[J]. 生态学杂志, 2017, 36(3): 616-622. DOI: 10.13292/j.1000-4890.201703.033. [47] 林伟山, 德科加, 钱诗祎, 等. 高寒草甸植被-土壤养分含量与气象因子相关关系研究[J]. 草原与草坪, 2023, 43(6): 109-120. DOI: 10.13817/j.cnki.cyycp.2023.06.015. [48] KATTGE J, KNORR W. Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species[J]. Plant, Cell & Environment, 2007, 30(9): 1176-1190. DOI: 10.1111/j.1365-3040.2007.01690.x. [49] 徐雨晴, 肖风劲, 於琍. 中国森林生态系统净初级生产力时空分布及其对气候变化的响应研究综述[J]. 生态学报, 2020, 40(14): 4710-4723. DOI: 10.5846/stxb201905080928. [50] PIAO S L, CIAIS P, HUANG Y, et al. The impacts of climate change on water resources and agriculture in China[J]. Nature, 2010, 467(7311): 43-51. DOI: 10.1038/nature09364. [51] NIPPERT J B, KNAPP A K. Soil water partitioning contributes to species coexistence in tallgrass prairie[J]. Oikos, 2007, 116(6): 1017-1029. DOI: 10.1111/j.0030-1299.2007.15630.x. [52] LOBELL D B, GOURDJI S M. The influence of climate change on global crop productivity[J]. Plant Physiology, 2012, 160(4): 1686-1697. DOI: 10.1104/pp.112.208298. [53] FAY P A, CARLISLE J D, KNAPP A K, et al. Productivity responses to altered rainfall patterns in a C4-dominated grassland[J].Oecologia, 2003, 137(2): 245-251. DOI: 10.1007/s00442-003-1331-3. [54] ZHA X J, NIU B, LI M, et al. Increasing impact of precipitation on alpine-grassland productivity over last two decades on the Tibetan Plateau[J]. Remote Sensing, 2022, 14(14): 3430. DOI: 10.3390/rs14143430. [55] TAO Z X, HUANG W J, WANG H J. Soil moisture outweighs temperature for triggering the green-up date in temperate grasslands[J]. Theoretical and Applied Climatology, 2020, 140(3): 1093-1105.. DOI: 10.1007/s00704-020-03145-z. [56] SUN H Z, WANG J Y, XIONG J N, et al. Vegetationchange and its response to climate change in Yunnan Province, China[J]. Advances in Meteorology, 2021, 2021(1): 8857589. DOI: 10.1155/2021/8857589. [57] 李蒙, 黄玮, 周建琴, 等. 云南不同气候带农业气候资源变化特征研究[J]. 中国农学通报, 2021, 37(34): 103-111. DOI: 10.11924/j.issn.1000-6850.casb2020-0561. [58] DU G M, YAN S H, CHEN H, et al. Intra-annual cumulative effects and mechanisms of climatic factors on global vegetation biomes' growth[J]. Remote Sensing, 2024, 16(5): 779. DOI: 10.3390/rs16050779. [59] TONG R, CAO Y N, ZHU Z H, et al. Solar radiation effects on leaf nitrogen and phosphorus stoichiometry of Chinese fir across subtropical China[J]. Forest Ecosystems, 2021, 8(1): 62. DOI: 10.1186/s40663-021-00344-6. |
| [1] | ZUO Xiaodong, WANG Xinxin, XU Zuyuan, ZHENG Hong, CAO Guangqiu, CAO Shijiang. Effects of Different Stand Densities on Soil Properties and Understory Vegetation in Chinese fir Plantation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 201-212. |
| [2] | TANG Li, LI Mengxia, HUANG Huixin, PAN Xinru, JIANG Xuefang, YANG Shujun, PAN Yu, QIN Yunbin. Effects of Karst Vegetation Restoration on GRSP in Northern Guangxi [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(1): 9-19. |
| [3] | ZHANG Shiyan, XIE Qiang, HUANG Lijuan, HUANG Qing, FENG Xueyu, SU Hualong. Niche Analysis of Main Populations in Cyclobalanopsis glauca Community in Lingqu Basin of Guangxi, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 162-173. |
| [4] | ZHANG Xiaoxiao, WANG Miaomiao, FENG Shuzhen, QIU Husen, GAI Shuangshuang, ZHAO Lei, HU Yajun, HE Xunyang, LU Zujun. Effects of Lithology and Vegetation Type on the Soil AM Fungi Community in Karst Region [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 158-167. |
| [5] | LIAO Chungui, CHEN Yuelian, XIONG Xiaoju, HU Baoqing. Changes of Vegetation NDVI and Its Driving Factors from 2007 to 2016 in Guangxi,China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 118-127. |
| [6] | LIANG Shi-chu, TIAN Hua-li, TIAN Feng, XIA Yi, QIN Ying-ying. Wetland Vegetation Types and Their Distribution Characteristics in Lijiang River [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 115-119. |
| [7] | LIANG Bao-ping, LI Yi, LIU Qing-ye. Analysis of Spatial Characteristics between Vegetation Index andLand Surface Temperature:A Case Study in Guilin City [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 132-137. |
|