Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (6): 117-125.doi: 10.16088/j.issn.1001-6600.2023111701
Previous Articles Next Articles
CHENG Can’er1,2, HUANG Chuanyang1,2, ZHANG Qiunan1,2, ZHANG Zhao1,2, YANG Jun3, TONG Zhangwei4, SHAO Weijia1,2, TANG Jian1,2, SHAO Laipeng1,2, HU Junhui1,2, WANG Yongmei1,2*
| [1] WOOD R W. XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1902, 4(21): 396-402. DOI: 10.1080/14786440209462857. [2] FANO U. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves)[J]. Journal of the Optical Society of America, 1941, 31(3): 213-222. DOI: 10.1364/JOSA.31.000213. [3] 段媛媛,杨成丽,周建刚,等.基于SPR生物传感器的免疫学检测[J].生物技术通讯,2002,13(4):264-268. DOI:10.3969/j.issn.1009-0002.2002.04.005. [4] KNIGHT J C, BROENG J, BIRKS T A, et al. Photonic band gap guidance in optical fibers[J]. Science, 1998, 282(5393): 1476-1478. DOI: 10.1126/science.282.5393.1476. [5] BIRKS T A, KNIGHT J C, RUSSELL P S. Endlessly single-mode photonic crystal fiber[J]. Optics Letters, 1997, 22(13): 961-963. DOI: 10.1364/ol.22.000961. [6] AHMED R, KHAN M, AHMMED R, et al. Design, simulation & optimization of 2D photonic crystal power splitter[J]. Optics and Photonics Journal, 2013, 3(2A): 13-19. DOI: 10.4236/opj.2013.32A002. [7] ZHAO Y, DENG Z Q, LI J. Photonic crystal fiber based surface plasmon resonance chemical sensors[J]. Sensors and Actuators B: Chemical, 2014, 202: 557-567. DOI: 10.1016/j.snb.2014.05.127. [8] TONG K, CAI Z Y, WANG J, et al. D-type photonic crystal fiber sensor based on metal nanowire array[J]. Optik, 2020, 218: 165010. DOI: 10.1016/j.ijleo.2020.165010. [9] FAN B, ZHANG T M X, HE S M, et al. Chirality parameter sensing based on surface plasmon resonance D-type photonic crystal fiber sensors[J]. Applied Optics, 2021, 60(12): 3314-3321. DOI: 10.1364/AO.420577. [10] LIU W, HU C J, ZHOU L, et al. A square-lattice D-shaped photonic crystal fiber sensor based on SPR to detect analytes with large refractive indexes[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 138: 115106. DOI: 10.1016/J.PHYSE.2021.115106. [11] JABIR J N. Comparison of high-sensitivity plasmonic temperature sensor based on photonic crystal fiber[J]. Plasmonics, 2022, 17(5): 2245-2253. DOI: 10.1007/S11468-022-01714-8. [12] ZHOU C, ZHANG Y T, LI X, et al. Photonic crystal fiber sensor based on hybrid mechanisms: Plasmonic and directional resonance coupling[J]. Optics Communications, 2012, 285(9): 2466-2471. DOI: 10.1016/j.optcom.2012.01.031. [13] ZHANG J G, YUAN J H, QU Y W, et al. A novel surface plasmon resonance-based photonic crystal fiber refractive index sensor with an ultra-wide detection range[J]. Optik, 2022, 259: 168977. DOI: 10.1016/j.ijleo.2022.168977. [14] 刘庆敏,侯尚林,雷景丽.D型表面等离子共振光纤液体生物传感器设计与分析(英文)[J].光子学报,2022,51(9):215-224. [15] CHEN X, BU W Y, WU Z F, et al. Near-infrared long-range surface plasmon resonance in a D-shaped honeycomb microstructured optical fiber coated with Au film[J]. Optics Express, 2021, 29(11): 16455-16468. DOI: 10.1364/OE.419585. [16] MASHRAFI M, KAMRUNNAHAR Q M, HAIDER F, et al. Bio-inspired butterfly core-shaped photonic crystal fiber-based refractive index sensor[J]. OSA Continuum, 2021, 4(4): 1179-1190. DOI: 10.1364/OSAC.416953. [17] GUPTA A, SINGH T, SINGH R K, et al. Numerical analysis of coronavirus detection using photonic crystal fibre-based SPR sensor[J]. Plasmonics, 2023, 18(2): 577-585. DOI: 10.1007%2Fs11468-022-01761-1. [18] LIU C, YANG L, LIU Q, et al. Analysis of a surface plasmon resonance probe based on photonic crystal fibers for low refractive index detection[J]. Plasmonics, 2018, 13(3): 779-784. DOI: 10.1007/s11468-017-0572-7. [19] PAUL D, BISWAS R. [INVITED] Highly sensitive LSPR based photonic crystal fiber sensor with embodiment of nanospheres in different material domain[J]. Optics & Laser Technology, 2018, 101: 379-387. DOI: 10.1016/j.optlastec.2017.11.040. [20] LI C G, YAN B, LIU JJ. Refractive index sensing characteristics in a D-shaped photonic quasi-crystal fiber sensor based on surface plasmon resonance[J]. Journal of the Optical Society of America A, 2019, 36(10): 1663-1668. DOI: 10.1364/JOSAA.36.001663. [21] ZHANG X, KANG H, WANG P, et al. Refractive index and temperature sensor based on dual-D-shapes photonic crystal fiber surface plasmon resonance[J]. The European Physical Journal Plus, 2022, 137(9): 1086. DOI: 10.1140/epjp/s13360-022-03299-x. [22] GUERREIRO A, SANTOS D F, BAPTISTA J M. New trends in the simulation of nanosplasmonic optical D-type fiber sensors[J]. Sensors, 2019, 19(8): 1772. DOI: 10.3390/s19081772. [23] LIU C, LÜ J W, LIU W, et al. Overview of refractive index sensors comprising photonic crystal fibers based on the surface plasmon resonance effect [Invited] [J].Chinese Optics Letters, 2021, 19(10): 102202. [24] 陆杭林,邵来鹏,张帆,等.光纤MZI传感器传感机理与传感应用研究进展[J].广西师范大学学报(自然科学版),2022,40(6):1-17.DOI:10.16088/j.issn.1001-6600.2022050501. [25] SINGH S, PRAJAPATI Y K. Highly sensitive dual-core symmetrical side-polished modified D-shaped SPR based PCF refractive index sensor with deeply etched micro openings[J]. Optik, 2021, 235: 166657. DOI: 10.1016/j.ijleo.2021.166657. [26] BING P B, SUI J L, WU G F, et al. Analysis of dual-channel simultaneous detection of photonic crystal fiber sensors[J]. Plasmonics, 2020, 15(4): 1071-1076. DOI: 10.1007/s11468-020-01131-9. [27] GU S F, SUN W, LI M, et al. Highly sensitive plasmonic refractive index sensor based on dual D-shaped photonic crystal fiber with aluminum nitride-silver films[J].Plasmonics, 2022, 17(3): 1129-1137. DOI: 10.1007/S11468-022-01609-8. [28] PAN H G, PAN F, ZHANGA A L, et al. Wide refractive index detection range surface plasmon resonance sensor based on D-shaped photonic crystal fiber[J]. Optical and Quantum Electronics, 2022, 54(6): 393. DOI: 10.1007/S11082-022-03805-6. [29] JAIN S, CHOUDHARY K, KUMAR S. Photonic crystal fiber-based SPR sensor for broad range of refractive index sensing applications[J]. Optical Fiber Technology, 2022, 73: 103030. DOI: 10.1016/j.yofte.2022.103030. [30] AN W, LI C, WANG D, et al. Design and analysis of a high-sensitivity fan-shaped photonic crystal fiber sensor based on surface plasmon resonance[J]. Optical and Quantum Electronics, 2023, 55(12): 1047. DOI: 10.1007/s11082-023-05249-y. [31] ZHANG S, WU B, GAO Z G, et al. A wide measurement range plasmonic refractive index sensor based on side-polished photonic crystal fiber[J]. Physica Scripta, 2023, 98(11): 115513. DOI: 10.1088/1402-4896/acfe4f. |
| [1] | SONG Guanwu, CHEN Zhiming, LI Jianjun. Remote Sensing Image Classification with Cascade Attention Based on ResNet-50 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 80-91. |
| [2] | LING Zhanjun, LI Hongtao, LU Hanglin, FU Gurui, HUANG Tianqi, LÜ Liang, YU Benli. Research on Refractive Index Sensing Based on Micro-nano Fiber Coupler [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 31-40. |
| [3] | DAI Mingyao, LI Yashi, HUANG Xinni, XIAO Jun, HUANG Zhiqing, LÜ Chunmeng, LU Zujun. Effects of phzR Gene of Pseudomonas aeruginosa on Biofilm Gene Expression and Cell Motility [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 161-174. |
| [4] | XIN Wenjie, MA Jiangming, WANG Yongqi. Evaluation of Ecological Environment Quality in Guilin City Based on RSEI [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 200-212. |
| [5] | LU Hanglin, SHAO Laipeng, ZHAN Fan, TANG Jian, LI Yuanpeng, WANG Yongmei, HU Junhui. Sensing Mechanism and Applications of Mach-Zehnder Interferometer Optical Fiber Sensors [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 1-17. |
| [6] | LIANG Yuting, LUO Yuling, ZHANG Shunsheng. Review on Chaotic Image Encryption Based on Compressed Sensing [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 49-58. |
| [7] | CHEN Zhiming, ZHANG Jiang, QIU Hanqing, DAI Yingcheng, WU Yuxin, LI Jianjun. High Resolution Remote Sensing Image Classification Based on Dense Connection [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 88-94. |
| [8] | ZHANG Ru, ZHANG Bei, REN Hongrui. Spatio-temporal Dynamics Analysis and Its Affecting Factors of Cropland Loss in Xuangang Mining Area, Shanxi, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 121-132. |
| [9] | XUE Yang,ZENG Qingke,XIA Haiying,WANG Wentao. Remote Sensing Image Fusion Based on Convolutional Neural Network Super-resolution Reconstruction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 33-41. |
| [10] | ZHANG Fang. Ecological Landscape Patterns in Ebinur Lake Region Based on Remote Sensing [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 156-164. |
| [11] | ZHANG Hui-ying, LIU Rui-qiang. A Comparative Study on Salt Solubility, Densities and Refractive Indices in Ternary Systems Composed of Alkali Metal (Na, K, Rb, and Cs) Nitrate, Alcohol, and Water [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 87-95. |
| [12] | LIANG Bao-ping, MA Yi-fang, CHEN Gui-nan. Analysis on the Temporal-Spatial Feature of Construction Land in Guilin Urban Areas [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 152-159. |
| [13] | CHEN Mei-juan, LI Chuan-qi, LUO De-jun, LU Ye. Two Methods for Simultaneous Measurement of Liquid Temperature and Refractive Index by a Long Period Fiber Grating [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(4): 1-5. |
| [14] | WANG Xiao-yan, REN Guo-ye, LIU Wei-dong, WANG Hong. Quick Flood Disaster Statistics Stats Simulation Technology Based on the Remote Sensing and GIS Technology [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(4): 32-38. |
| [15] | WEI Chun-rong, HE Chu. A Remote Sensing Image Registration Algorithm Basing on the Improved Mutual Information [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(2): 20-25. |
|