Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (6): 126-137.doi: 10.16088/j.issn.1001-6600.2023121801

Previous Articles     Next Articles

Head Pose-Robust Facial Expression Recognition

HOU Haiyan1, TAN Yumei2, SONG Shuxiang1, XIA Haiying1*   

  1. 1. School of Electronic and Information Engineering/School of Integrated Circuits, Guangxi Normal University, Guilin Guangxi 541004, China;
    2. School of Computer Science and Engineering, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2023-12-18 Revised:2024-03-10 Online:2024-12-30 Published:2024-12-30

Abstract: This paper proposes a Dual-branch Feature Fusion (DFF) method to enhance the robustness of head posture in facial expression recognition, addressing the issue of low recognition performance caused by head posture interference. Firstly, in the expression branch, high-dimensional rough semantic features are extracted using the ResNet18 backbone network. Then, the Spatial Feature Enhancement (SFE) module is employed to facilitate information interaction among high-level semantic features at the spatial level, thereby improving the expression feature extraction capability. Meanwhile, in the head pose branch, head pose features are extracted using the Head Pose Feature Extraction (HPFE),which is pre-trained on the head pose dataset 300W_LP with fixed weights. Finally, the expression features in the expression branch and the head pose features in the head pose branch are fused element-by-element to attain complementary information and establish a pose-robust emotional representation. The proposed method is evaluated on two widely-used datasets: RAF-DB dataset and FERPlus dataset. On the Pose Variation test set, the recognition accuracy of the two head poses (Pose>30° and Pose>45°) is 89.98% and 89.96% on the RAF-DB dataset, and 89.20% and 87.94% on FERPlus dataset, respectively. The experimental results show that the method proposed in this paper improves the accuracy of facial expression recognition in images under head posture interference, which is of great significance for research on facial expression recognition in natural environments.

Key words: expression recognition, head posture, feature extraction, robustness, deep learning

CLC Number:  TP391.41
[1] LI S, DENG W H. Deep facial expression recognition: A survey[J]. IEEE Transactions on Affective Computing, 2022, 13(3): 1195-1215. DOI: 10. 1109/TAFFC.2020.2981446.
[2] 李晶, 李健, 陈海丰, 等. 基于关键区域遮挡与重建的人脸表情识别[J]. 计算机工程, 2024, 50(5): 241-249. DOI: 10.19678/j.issn.1000-3428.0067538.
[3] VINCIARELLI A, PANTIC M, BOURLARD H. Social signal processing: survey of an emerging domain[J]. Image and Vision Computing, 2009, 27(12): 1743-1759. DOI: 10.1016/j.imavis.2008.11.007.
[4] 廖明明, 赵波. 基于面部表情和双流网络的驾驶员疲劳检测[J]. 科学技术与工程, 2022, 22(2): 614-619. DOI: 10.3969/j.issn.1671-1815.2022.02.024.
[5] GRECO M, CARUSO P F, CECCONI M. Artificial intelligence in the intensive care unit[J]. Seminars in Respiratory and Critical Care Medicine, 2021, 42(1): 2-9. DOI: 10.1055/S-0040-1719037.
[6] 陈子健. 在线学习环境下基于面部表情的学习情绪识别方法及应用研究[D]. 武汉: 华中师范大学, 2020.
[7] 张发勇, 刘袁缘, 李杏梅, 等. 基于多视角深度网络增强森林的表情识别[J]. 计算机辅助设计与图形学学报, 2018, 30(12): 2318-2326. DOI: 10.3724/SP.J.1089.2018.17154.
[8] 蒋斌, 钟瑞, 张秋闻, 等. 采用深度学习方法的非正面表情识别综述[J]. 计算机工程与应用, 2021, 57(8): 48-61. DOI: 10.3778/j.issn.1002-8331.2012-0227.
[9] XUE F L, WANG Q C, GUO G D. TransFER: learning relation-aware facial expression representations with transformers[C] // 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2021: 3581-3590. DOI: 10.1109/ICCV48922.2021.00358.
[10] ZHANG F F, ZHANG T Z, MAO Q R, et al. Joint pose and expression modeling for facial expression recognition[C] // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2018: 3359-3368. DOI: 10.1109/CVPR.2018.00354.
[11] 陈国社, 张青, 李凡. 基于多姿态多状态面部情绪模型的表情识别[J]. 华中科技大学学报(自然科学版), 2004, 32(8): 60-62. DOI: 10.13245/j.hust.2004.08.021.
[12] GÜNEY F, ARAR N M, FISCHER M, et al. Cross-pose facial expression recognition[C] // 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG). Piscataway, NJ: IEEE, 2013: 1-6. DOI: 10.1109/FG.2013.6553814.
[13] HASSNER T, HAREL S, PAZ E, et al. Effective face frontalization in unconstrained images[C] // 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2015: 4295-4304. DOI:10.1109/CVPR.2015.7299058.
[14] ZHANG F F, MAO Q R, SHEN X J, et al. Spatially coherent feature learning for pose-invariant facial expression recognition[J]. ACM Transactions on Multimedia Computing, Communications and Applications, 2018, 14(1s): 27. DOI: 10.1145/3176646.
[15] 孙哲. 基于解耦空间特征学习的稀疏表示面部表情识别算法研究[D]. 秦皇岛: 燕山大学, 2018. DOI: 10.7666/d.D01511248.
[16] RUAN D L, YAN Y, CHEN S, et al. Deep disturbance-disentangled learning for facial expression recognition[C] // Proceedings of the 28th ACM International Conference on Multimedia. New York, NY: Association for Computing Machinery, 2020: 2833-2841. DOI: 10.1145/3394171.3413907.
[17] RUAN D L, MO R Y, YAN Y, et al. Adaptive deep disturbance-disentangled learning for facial expression recognition[J]. International Journal of Computer Vision, 2022, 130(2): 455-477. DOI: 10.1007/s11263-021-01556-7.
[18] JIANG J, DENG W H. Disentangling identity and pose for facial expression recognition[J]. IEEE Transactions on Affective Computing, 2022. 13(4): 1868-1878. DOI: 10.1109/taffc.2022.3197761.
[19] 刘娟, 王颖, 胡敏, 等. 融合全局增强-局部注意特征的表情识别网络[J]. 计算机科学与探索, 2024,18(9): 2487-2500.DOI: 10.3778/j.issn.1673-9418.2307013.
[20] LIU Y Y, ZENG J B, SHAN S G, et al. Multi-channel pose-aware convolution neural networks for multi-view facial expression recognition[C] // 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018). Los Alamitos, CA: IEEE Computer Society, 2018: 458-465. DOI:10.1109/FG.2018.00074.
[21] LIU Y Y, DAI W, FANG F, et al. Dynamic multi-channel metric network for joint pose-aware and identity-invariant facial expression recognition[J]. Information Sciences, 2021, 578: 195-213. DOI:10.1016/j.ins.2021.07.034.
[22] 郭胜, 蔡姗, 邹雪, 等. 基于加权多头并行注意力的局部遮挡面部表情识别[J]. 计算机系统应用, 2024, 33(1): 254-262. DOI: 10.15888/j.cnki.csa.009352.
[23] 南亚会, 华庆一. 局部加全局视角遮挡人脸表情识别方法[J]. 计算机工程与应用, 2024, 60(13): 180-189. DOI: 10.3778/j.issn.1002-8331.2309-0213.
[24] ZHU X Y, LEI Z, LIU X M, et al. Face alignment across large poses: a 3D solution[C] // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2016: 146-155. DOI: 10.1109/CVPR.2016.23.
[25] HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C] // 2019 IEEE/CVF International Conference on Computer Vision(ICCV). Los Alamitos, CA: IEEE Computer Society, 2019: 1314-1324. DOI: 10.1109/ICCV.2019.00140.
[26] WEN Z Y, LIN W Z, WANG T, et al. Distractyour attention: multi-head cross attention network for facial expression recognition[J]. Biomimetics, 2023, 8(2): 199. DOI: 10.3390/biomimetics8020199.
[27] LI S, DENG W H, DU J P. Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild[C] // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2017: 2584-2593. DOI: 10.1109/CVPR.2017.277.
[28] BARSOUM E, ZHANG C, FERRER C C, et al. Training deep networks for facial expression recognition with crowd-sourced label distribution[C] // Proceedings of the 18th ACM International Conference on Multimodal Interaction. New York, NY: Association for Computing Machinery, 2016: 279-283. DOI: 10.1145/2993148.2993165.
[29] WANG K, PENG X J, YANG J F, et al. Region attention networks for pose and occlusion robust facial expression recognition[J]. IEEE Transactions on Image Processing, 2020, 29: 4057-4069. DOI: 10.1109/TIP.2019.2956143.
[30] RUDER S. An overview of gradient descent optimization algorithms[EB/OL]. (2017-06-15)[2023-12-18]. https://arxiv.org/abs/1609.04747. DOI: 10.48550/arXiv.1609.04747.
[31] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128(2): 336-359. DOI: 10.1007/s11263-019-01228-7.
[32] LI Y J, LU G M, LI J X, et al. Facial expression recognition in the wild using multi-level features and attention mechanisms[J]. IEEE Transactions on Affective Computing, 2023, 14(1): 451-462. DOI: 10.1109/TAFFC.2020.3031602.
[33] MA F Y, SUN B, LI S T. Facial expression recognition with visual transformers and attentional selective fusion[J]. IEEE Transactions on Affective Computing, 2023, 14(2): 1236-1248. DOI: 10.1109/TAFFC.2021.3122146.
[34] GERA D, BALASUBRAMANIAN S. Landmark guidance independent spatio-channel attention and complementary context information based facial expression recognition[J]. Pattern Recognition Letters, 2021, 145: 58-66. DOI: 10.1016/j.patrec.2021.01.029.
[35] XIA H Y, LU L D, SONG S X. Feature fusion of multi-granularity and multi-scale for facial expression recognition[J]. The Visual Computer, 2024, 40(3): 2035-2047. DOI: 10.1007/s00371-023-02900-3.
[36] 罗岩, 冯天波, 邵洁. 基于注意力及视觉Transformer的野外人脸表情识别[J]. 计算机工程与应用, 2022, 58(10): 200-207. DOI: 10.3778/j.issn.1002-8331.2111-0044.
[37] CHO S, LEE J. Learning local attention with guidance map for pose robust facial expression recognition[J]. IEEE Access, 2022, 10: 85929-85940. DOI: 10.1109/ACCESS.2022.3198658.
[38] JIANG J, DENG W H. Boosting facial expression recognition by a semi-supervised progressive teacher[J]. IEEE Transactions on Affective Computing, 2023, 14(3): 2402-2414. DOI: 10.1109/taffc.2021.3131621.
[39] WANG K, PENG X J, YANG J F, et al. Suppressing uncertainties for large-scale facial expression recognition[C] // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2020: 6896-6905. DOI: 10.1109/CVPR42600.2020.00693.
[40] 南亚会, 华庆一, 刘继华. 嵌入注意力的Gabor CNN快速人脸表情识别方法[J]. 软件导刊, 2023, 22(9): 182-189. DOI: 10.11907/rjdk.231549.
[41] 何昱均, 韩永国, 张红英. FFDNet:复杂环境中的细粒度面部表情识别[J]. 计算机应用研究,2024, 41(5): 1578-1584. DOI: 10.19734/j.issn.1001-3695.2023.08.0394.
[42] SHAO J, LUO Y. TAMNet: two attention modules-based network on facial expression recognition under uncertainty[J]. Journal of Electronic Imaging, 2021, 30(3): 033021. DOI: 10.1117/1.JEI.30.3.033021.
[1] LI Xin, NING Jing. Online Assessment of Transient Stability in Power Systems Based on Spatiotemporal Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 89-100.
[2] LU Jiahui, CHEN Qingfeng, WANG Wenguang, YU Qian, HE Naixu, HAN Zongzhao. Multi-scale Attention Learning for Abdomen Multi-organ Image Segmentation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 138-148.
[3] DU Shuaiwen, JIN Ting. A Deep Hybrid Recommendation Algorithm Based on User Behavior Characteristics [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 91-100.
[4] HUANG Runqin, SU Min, LIU Jia, WANG Tao. Avian Dynamic Electromagnetic Scattering Feature Extraction Based on Wavelet Transform and Singular Value Decomposition [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 74-89.
[5] TIAN Sheng, HU Xiao. Vehicle Trajectory Prediction Based on Transformer Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 47-58.
[6] YI Jianbing, PENG Xin, CAO Feng, LI Jun, XIE Weijia. Research on Point Cloud Registration Algorithm Based on Multi-scale Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 108-120.
[7] XIAO Yuting, LÜ Xiaoqi, GU Yu, LIU Chuanqiang. Classification of Diabetic Retinopathy Based on Split Residual Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 91-101.
[8] GAO Fei, GUO Xiaobin, YUAN Dongfang, CAO Fujun. Improved PINNs Method for Solving the Convective Dominant Diffusion Equation with Boundary Layer [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 33-50.
[9] LIN Wancong, HAN Mingjie, JIN Ting. Multi-level Argument Position Classification Method via Data Augmentation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 62-69.
[10] LIANG Zhengyou, CAI Junmin, SUN Yu, CHEN Lei. Point Cloud Classification Based on Residual Dynamic Graph Convolution and Feature Enhancement [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 37-48.
[11] JIANG Yibo, LIU Huijia, WU Tian. Research on Identification of Lightning Overvoltage in Transmission Line by Improved Residual Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 74-83.
[12] LIANG Zhenfeng, XIA Haiying. A Fast Stitching Algorithm for UAV Aerial Images [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 41-52.
[13] YANG Shuozhen, ZHANG Long, WANG Jianhua, ZHANG Hengyuan. Review of Sound Event Detection [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 1-18.
[14] WANG Luna, DU Hongbo, ZHU Lijun. Stacked Capsule Autoencoders Optimization Algorithm Based on Manifold Regularization [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 76-85.
[15] YU Mengzhu, TANG Zhenjun. Survey of Video Hash Research Based on Hand-craft Features [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 72-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHU Gege, HUANG Anshu, QIN Yingying. Analysis of Development Trend of International Mangrove Research Based on Web of Science[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 1 -12 .
[2] HE Jing, FENG Yuanliu, SHAO Jingwen. Research Progress on Multi-source Data Fusion Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 13 -27 .
[3] WANG Shuying, LU Yuxiang, DONG Shutong, CHEN Mo, KANG Bingya, JIANG Zhanglan, SU Chengyuan. Research Progress on the Propagation Process and Control Technology of ARGs in Wastewater[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 1 -15 .
[4] ZHONG Qiao, CHEN Shenglong, TANG Congcong. Hydrogel Technology for Microalgae Collection: Status Overview, Challenges and Development Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 16 -29 .
[5] ZHAI Siqi, CAI Wenjun, ZHU Su, LI Hanlong, SONG Hailiang, YANG Xiaoli, YANG Yuli. Dynamic Relationship Between Reverse Solute Flux and Membrane Fouling in Forward Osmosis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 30 -39 .
[6] ZHENG Guoquan, QIN Yongli, WANG Chenxiang, GE Shijia, WEN Qianmin, JIANG Yongrong. Stepwise Precipitation of Heavy Metals from Acid Mine Drainage and Mineral Formation in Sulfate-Reducing Anaerobic Baffled Reactor System[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 40 -52 .
[7] LIU Yang, ZHANG Yijie, ZHANG Yan, LI Ling, KONG Xiangming, LI Hong. Current Status and Trends of Algal Coagulation Elimination Technology in Drinking Water Treatment: a Visual Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 53 -66 .
[8] TIAN Sheng, CHEN Dong. A Joint Eco-driving Optimization Research for Connected Fuel Cell Hybrid Vehicle via Deep Reinforcement Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 67 -80 .
[9] CHEN Xiufeng, WANG Chengxin, ZHAO Fengyang, YANG Kai, GU Kexin. A Single Intersection Signal Control Method Based on Improved DQN Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 81 -88 .
[10] LI Xin, NING Jing. Online Assessment of Transient Stability in Power Systems Based on Spatiotemporal Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 89 -100 .