Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (5): 123-133.doi: 10.16088/j.issn.1001-6600.2022092101
Previous Articles Next Articles
PANG Lifang1, YU Tailin1,2*
[1] 张东秋, 石培礼,张宪洲.土壤呼吸主要影响因素的研究进展[J].地球科学进展,2005,20(7):778-785.DOI:10.3321/j.issn:1001-8166.2005.07.012. [2] FUNG T, VERMA S, CHISHOLM R A. Probability distributions of extinction times, species richness, and immigration and extinction rates in neutral ecological models[J]. Journal of Theoretical Biology, 2020, 485: 110051. DOI: 10.1016/j.jtbi.2019.110051. [3] 杨楠,马东源,钟雪,等.基于MaxEnt模型的四川王朗国家级自然保护区蓝马鸡栖息地适宜性评价[J].生态学报,2020,40(19):7064-7072.DOI:10.5846/stxb201908081666. [4] WAGNER D L. Insect declines in the Anthropocene[J]. Annual Review of Entomology, 2020, 65: 457-480. DOI: 10.1146/annurev-ento-011019-025151. [5] SOROYE P, NEWBOLD T, KERR J. Climate change contributes to widespread declines among bumble bees across continents[J]. Science, 2020, 367(6478): 685-688. DOI: 10.1126/science.aax8591. [6] Intergovernmental Panel on Climate Change. Climate change 2013-the physical science basis: Working Group I contribution to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2014. [7] QIN H, DONG G, ZHANG Y B, et al. Patterns of species and phylogenetic diversity of Pinus tabuliformis forests in the eastern Loess Plateau, China[J]. Forest Ecology and Management, 2017, 394: 42-51. DOI: 10.1016/j.foreco.2017.03.030. [8] ZHANG K L, YAO L J, MENG J S, et al. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change[J]. Science of the Total Environment, 2018, 634: 1326-1334. DOI: 10.1016/j.scitotenv.2018.04.112. [9] FLOWERDEW J R. Reviewed work: small mammals: their productivity and population dynamics[J]. Journal of Applied Ecology, 1976, 13(3): 991-992. DOI: 10.2307/2402272. [10] 吴建国,吕佳佳,艾丽.气候变化对生物多样性的影响:脆弱性和适应[J].生态环境学报,2009,18(2):693-703.DOI:10.3969/j.issn.1674-5906.2009.02.056. [11] 朱耿平,刘国卿,卜文俊,等.生态位模型的基本原理及其在生物多样性保护中的应用[J].生物多样性,2013,21(1):90-98.DOI:10.3724/SP.J.1003.2013.09106. [12] PHILLIPS S J, ANDERSON R P, SCHAPIRE R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3/4): 231-259. DOI: 10.1016/j.ecolmodel.2005.03.026. [13] 方亦午,刘乐乐,郭恺,等.基于MaxEnt的苹果根结线虫在中国的适生区预测[J].植物检疫,2020,34(5):68-73.DOI:10.19662/j.cnki.issn1005-2755.2020.00.026. [14] 翁国杭,姜武,包其敏,等.浙江乌岩岭国家级自然保护区黄腹角雉分布范围[J].浙江农林大学学报,2022,39(3):582-589.DOI:10.11833/j.issn.2095-0756.20210456. [15] 张雁云.黄腹角雉研究概述[J].动物学杂志,2005,40(1):104-107.DOI:10.3969/j.issn.0250-3263.2005.01.020. [16] 陈方敏,徐明策,李俊祥.中国东部地区常绿阔叶林景观破碎化[J].生态学杂志,2010,29(10):1919-1924.DOI:10.13292/j.1000-4890.2010.0266. [17] 程松林,毛夷仙,晏雨鸿.黄腹角雉在江西省的地理分布与保护建议[J].野生动物,2013,34(2):84-88.DOI:10.3969/j.issn.1000-0127.2013.02.007. [18] 郑光美,赵欣如,宋杰,等.黄腹角雉的繁殖生态研究[J].生态学报,1985,5(4):379-385,392. [19] 孟艺宏,徐璕,姜小龙,等.双花木属植物潜在分布区模拟与分析[J].生态学报,2019,39(8):2816-2825.DOI:10.5846/stxb201805311203. [20] 叶兴状,张明珠,赖文峰,等.基于MaxEnt优化模型的闽楠潜在适宜分布预测[J].生态学报,2021,41(20):8135-8144.DOI:10.5846/stxb202007131822. [21] 刘雷雷,郑方东,李佳琦,等.浙江乌岩岭自然保护区黄腹角雉适宜栖息地的选择[J].生态学杂志,2019,38(10):3123-3128.DOI:10.13292/j.1000-4890.201910.029. [22] 王德良,辜娇峰,何平.八大公山红腹角雉对植被因素选择的分析[J].山东大学学报(理学版),2009,44(3):17-21. [23] 夏珊珊,胡大明,邓玥,等.同域分布红腹锦鸡和红腹角雉在不同空间尺度下的生境分化[J].生态学报,2019,39(5):1627-1638.DOI:10.5846/stxb201809051894. [24] LOBO J M, JIMÉNEZ-VALVERDE A, HORTAL J. The uncertain nature of absences and their importance in species distribution modelling[J]. Ecography, 2010, 33(1): 103-114. DOI: 10.1111/j.1600-0587.2009.06039.x. [25] HIJMANS R J, CAMERON S E, PARRA J L, et al. Very high resolution interpolated climate surfaces for global land areas[J]. International Journal of Climatology, 2005, 25(15): 1965-1978. DOI: 10.1002/joc.1276. [26] FICK S E, HIJMANS R J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas[J]. International Journal of Climatology, 2017, 37(12): 4302-4315. DOI: 10.1002/joc.5086. [27] TATEISHI R, URIYANGQAI B, AL-BILBISI H, et al. Production of global land cover data-GLCNMO[J]. International Journal of Digital Earth, 2011, 4(1): 22-49. DOI: 10.1080/17538941003777521. [28] TATEISHI R, HOAN N, KOBAYASHI T, et al. Production of global land cover data-GLCNMO2008[J]. Journal of Geography and Geology, 2014, 6(3): 99-122. DOI: 10.5539/jgg.v6n3p99. [29] KOBAYASHI T, TATEISHI R, ALSAAIDEH B, et al. Production of global land cover data-GLCNMO2013[J]. Journal of Geography and Geology, 2017, 9(3): 1-15. DOI: 10.5539/jgg.v9n3p1. [30] VENTER O, SANDERSON E W, MAGRACH A, et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation[J]. Nature Communications, 2016, 7: 12558. DOI: 10.1038/ncomms12558. [31] VENTER O, SANDERSON E W, MAGRACH A, et al. Last of the wild project, version 3 (LWP-3): 2009 human footprint, 2018 release[DB/OL]. [2022-03-08]. https://doi.org/10.7927/H46T0JQ4. DOI: 10.7927/H46T0JQ4. [32] Wildlife Conservation Society-WCS, Center for International Earth Science Information Network -CIESIN-Columbia University. Last of the wild project, version 2, 2005 (LWP-2): global human influence index (HII) dataset (geographic)[DB/OL]. [2022-03-08]. https://doi.org/10.7927/H4BP00QC. DOI: 10.7927/H4BP00QC. [33] Center for International Earth Science Information Network-CIESIN-Columbia University. Gridded population of the world, version 4 (GPWv4): population density adjusted to Match 2015 revision UN WPP country totals, revision 11[DB/OL]. [2022-03-08]. https://doi.org/10.7927/H4F47M65. DOI: 10.7927/H4F47M65. [34] 王茹琳,李庆,封传红,等.基于MaxEnt的西藏飞蝗在中国的适生区预测[J].生态学报,2017,37(24):8556-8566.DOI:10.5846/stxb201611152326. [35] WANG R L, YANG H, LUO W, et al. Predicting the potential distribution of the Asian citrus psyllid, Diaphorina citri (Kuwayama), in China using the MaxEnt model[J]. PeerJ, 2019, 7: e7323. DOI: 10.7717/peerj.7323. [36] FLETCHER R J, HEFLEY T J, ROBERTSON E P, et al. A practical guide for combining data to model species distributions[J]. Ecology, 2019, 100(6): e02710. DOI: 10.1002/ecy.2710. [37] 塔旗,李言阔,范文青,等.基于最大熵生态位模型的中华穿山甲潜在适宜生境预测[J].生态学报,2021,41(24):9941-9952.DOI:10.5846/stxb202009152403. [38] 钱法文,郑光美.黄腹角雉的栖息地研究[J].北京师范大学学报(自然科学版),1993,29(2):256-264. [39] 韩梦阳,詹黎明,承勇,等.江西井冈山国家级自然保护区黄腹角雉冬季栖息地适宜性评估[J].林业资源管理,2014(6):146-152.DOI:10.13466/j.cnki.lyzygl.2014.06.030. [40] 章庆辰,高素华,段运怀,等.我国热带、亚热带农业气候资源及其合理利用[J].自然资源,1983(1):67-74. [41] 赵芳,张百平,朱连奇,等.秦巴山地垂直带谱结构的空间分异与暖温带-亚热带界线问题[J].地理学报,2019,74(5):889-901.DOI:10.11821/dlxb201905004. [42] 程松林,方毅,程林,等.江西武夷山自然保护区的雉类资源及其保护[J].海南师范大学学报(自然科学版),2009,22(1):83-85.DOI:10.3969/j.issn.1674-4942.2009.01.021. [43] 王岩,林炳青,潘卫华,等.武夷山北段地形对闽北不同时间尺度降水的影响分析[J].海峡科学,2019(5):3-9. DOI: 10.3969/j.issn.1673-8683.2019.05.001. [44] 王海伦,王金叶,闫文德,等.广西猫儿山国家级自然保护区森林生态系统生态服务价值评估[J].桂林理工大学学报,2018,38(1):117-123.DOI:10.3969/j.issn.1674-9057.2018.01.017. [45] 广西壮族自治区地方志编纂委员会.广西数字方志馆[EB/OL].[2022-11-11].http://gxszfzg.gxdfz.org.cn/templates/fzgmenhu/viewTxt.html?id=212&title=%E8%87%AA%E7%84%B6%E5%9C%B0%E7%90%86%E5%BF%97. [46] WAN J Z, WANG C J, YU F H, et al. Impacts of the spatial scale of climate data on the modeled distribution probabilities of invasive tree species throughout the world[J]. Ecological Informatics, 2016, 36: 42-49. DOI: 10.1016/j.ecoinf.2016.10.001. [47] 张晓玲,李亦超,王芸芸,等.未来气候变化对不同国家茶适宜分布区的影响[J].生物多样性,2019,27(6):595-606.DOI:10.17520/biods.2019085. [48] KOMORI O, EGUCHI S, SAIGUSA Y, et al. Sampling bias correction in species distribution models by quasi-linear Poisson point process[J]. Ecological Informatics, 2020, 55: 101015. DOI: 10.1016/j.ecoinf.2019.101015. [49] 郭彦龙,赵泽芳,乔慧捷,等.物种分布模型面临的挑战与发展趋势[J].地球科学进展,2020,35(12):1292-1305.DOI: 10.11867/j.issn.1001-8166.2020.110. |
[1] | HUANG Yuying, ZHAO Yinjun, XIE Qiongying, TONG Kai, DENG Qiyu, LIANG Yulian. Downscaling Method of TRMM Satellite Precipitation Data in Beibu Gulf Economic Zone in Southwest China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 163-169. |
|