Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (6): 185-195.doi: 10.16088/j.issn.1001-6600.2021120602

Previous Articles     Next Articles

Effects of Micro Texture Parameters on Near Wall Blood FlowCharacteristics of Vascular Stent

ZHENG Kairui1, YANG Fazhan1*, ZHAO Guodong1, BIAN Dongchao1, HUANG Ke1, CHE Chengye2   

  1. 1. School of Mechanical & Automotive Engineering, Qingdao University of Technology, Qingdao Shandong 266250, China;
    2. The Affiliated Hospital of Qingdao University, Qingdao Shandong 266000, China
  • Received:2021-12-06 Revised:2022-01-07 Online:2022-11-25 Published:2023-01-17

Abstract: In order to improve the blood flow characteristics near the wall after vascular stent implantation, inhibit the adhesion of platelets, lipids and other substances in the vascular stent and reduce the probability of restenosis in the stent, regular hexagonal convex micro textures with different heights were designed on the inner surface of the tubular vascular stent based on the principle of bionics.The effects of different height micro textures on the blood flow near the wall during systole and diastole were studied by finite element method. The results show that compared with non textured stents, stents with micro texture on the inner wall can effectively improve the blood flow state. When the blood flow velocity reaches the peak value during cardiac systole, the blood flow velocity under stents with micro texture height of 35 μm can be increased by 0.78%, and that under stents with micro texture height of 50 μm can be increased by 8.93%; When the diastolic blood flows smoothly, the blood flow velocity under the stent with 35 μm micro texture height can be increased by 2.20%, and the blood flow velocity under the stent with 50 μm micro texture height can be increased by 14.37%. Especially when the blood velocity reaches the peak, the blood near the wall appears disturbance and stagnation zone. With the increase of micro texture height, the amplitude of blood disturbance increases gradually; When the blood flow is in a stable state, the blood produces vortex and backflow near the wall. The higher the micro texture, the smaller the blood backflow and the greater the vortex intensity. Compared with non textured stents, micro textured stents can effectively improve the blood flow characteristics near the wall, improve the blood flow velocity and disturbance near the wall, and reduce the risk of restenosis.

Key words: micro texture, vascular stent, near wall, blood flow velocity, finite element analysis, Ansys, hydrodynamics

CLC Number: 

  • R318.11
[1] 尹岭, 李亚鹏, 陈景元. 我国心脑血管疾病综合防控研究进展[J]. 中国临床保健杂志, 2019, 22(3): 289-292.
[2] MASIP J, GERMÀ LLUCH J R. Alcohol, health and cardiovascular disease[J]. Revista Clínica Española(English Edition), 2021, 221(6): 359-368.
[3] WANG Y H, DUAN K D, ZHANG A H, et al. Clinical and imaging analysis of cerebral infarction caused by spontaneous cerebral artery dissection based on augmented reality technology[J]. Journal of Healthcare Engineering, 2021, 2021: 6671121.
[4] 安冬青, 吴宗贵. 动脉粥样硬化中西医结合诊疗专家共识[J]. 中国全科医学, 2017, 20(5): 507-511.
[5] PAN C, HAN Y F, LU J P. Structural design of vascular stents: a review[J]. Micromachines, 2021, 12(7): 770.
[6] 杨磊, 李霞飞, 董玉珍, 等. 小口径组织工程血管支架: 如何产生一种具有生理重塑活性的材料[J]. 中国组织工程研究, 2020, 24(22): 3579-3586.
[7] 李芳, 吴可通, 赵珺, 等. 血管支架及其在动脉瘤治疗中的发展趋势[J]. 中国组织工程研究, 2021, 25(34): 5561-5569.
[8] 张明. 促进血管内皮化冠脉支架的研究及支架内再狭窄的危险因素分析[D]. 长春: 吉林大学, 2020.
[9] 郭景振, 宋成利, 毛琳. 新型可回收血管支架的设计与有限元分析[J]. 医用生物力学, 2021, 36(3): 384-388.
[10] HEHRLEIN C, SCHORCH B, HABERSTROH J, et al. Bioresorbable zinc stent with ultra-thin center struts attenuates stent jail in porcine femoral artery bifurcations[J]. Minimally Invasive Therapy & Allied Technologies, 2022, 31(1): 72-79.
[11] 王建国. 冠脉支架的扩张模拟与流固耦合分析[D]. 包头: 内蒙古科技大学, 2013.
[12] SUN X Y, LI J L, ZHOU J H, et al. Reducing the adhesion effect of aluminum alloy by cutting tools with microgroove texture[J]. Applied Physics A, 2019, 125(9): 601.
[13] ZHANG N, YANG F Z, LIU G H. Cutting performance of micro-textured WC/Co tools in the dry cutting of Ti-6Al-4V alloy[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(9): 3967-3979.
[14] 李江澜, 汪帮富, 王中旺, 等. PMMA疏水性表面的飞秒激光制备研究[J]. 激光与红外, 2021, 51(2): 149-155.
[15] 刘宇航, 李岩, 李林, 等. 316L不锈钢表面微织构激光加工工艺参数[J]. 烟台大学学报(自然科学与工程版), 2021, 34(3): 266-271, 288.
[16] LI C, YANG Y, YANG L J, et al. In vitro bioactivity and biocompatibility of bio-inspired Ti-6Al-4V alloy surfaces modified by combined laser micro/nano structuring[J]. Molecules, 2020, 25(7): 1494.
[17] EZURA A, KATAHIRA K, KOMOTORI J. Generation of micro texture including calcium and phosphorus elements on titanium alloy for improvement of biocompatibility with laser induced mist surface treatment[C]// JSME 2020 Conference on Leading Edge Manufacturing/Materials and Processing. Tokyo: JSME, 2020: V001T08A016.
[18] TAHMASEBIFAR A, KAYHAN S M, EVIS Z, et al. Mechanical, electrochemical and biocompatibility evaluation of AZ91D magnesium alloy as a biomaterial[J]. Journal of Alloys and Compounds, 2016, 687: 906-919.
[19] 朱诗文. 血管支架表面织构设计及其血流动力学仿真分析[D]. 武汉: 武汉科技大学, 2019.
[20] 胡坤, 胡婷婷, 马海峰, 等. ANSYS Fluent实例详解[M]. 北京: 机械工业出版社, 2019: 70-79.
[21] 章德发. 颈动脉斑块形成和支架内再狭窄的血流动力学研究[D]. 南昌: 南昌大学, 2015.
[22] 王福军. 计算流体动力学分析: CFD 软件原理与应用[M]. 北京: 清华大学出版社, 2004.
[23] 邢美毅. 面向冠状动脉搭桥的小口径人工血管及其血液相容性[D]. 上海: 东华大学, 2020.
[24] 张璐霞. 激光表面织构化-表面修饰十六烷基三甲氧基硅烷奥氏体不锈钢的超疏水性和耐蚀性[D]. 太原: 太原理工大学, 2020.
[25] 常青林. 平行板间边界层流体速度计算及差异分析[J]. 中国海上油气, 2014, 26(1): 109-113.
[26] 彭阳生, 胡艳娇, 韦陈子炜, 等. 流道边界层附近颗粒运动规律仿真研究[J]. 化工管理, 2018(16): 61-62.
[27] 赵秀菊. 激光制备不锈钢超疏水微结构的壁湍流减阻实验研究[D]. 温州: 温州大学, 2019.
[28] 徐琰, 张臣, 汪子轩. 局部近似平面V型沟槽减阻特性数值模拟研究[J]. 航空制造技术, 2021, 64(15): 86-99.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] KUANG Xianyan, CHEN Ziru. Mixed Traffic Flow Model of Signalized Intersections Involving Pedestrian Comity[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 1 -15 .
[2] LIU Weiming, CHEN Gangmei, LIN Guanrong, LI Jingning. Coordination Control Method for Toll Station of Freeway and Adjacent Intersection[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 16 -26 .
[3] ZOU Yanli, WANG Yang, LIU Shusheng, YAO Fei. Study of Cascading Failure in the Grid under the Capacity Load Model with Neighbors Degree Information[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 27 -36 .
[4] XIE Lina, JIANG Pinqun, SONG Shuxiang, CEN Mingcan. A Low-Loss, Low-Noise, Wide-Tuned High-Order Cascade N-Path Filter[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 37 -44 .
[5] LUO Lan, ZHOU Nan, SI Jie. New Delay Partition Method for Robust Stability of Uncertain Cellular Neural Networks with Time-Varying Delays[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 45 -52 .
[6] WANG Jian, ZHENG Qifan, LI Chao, SHI Jing. Remote Supervision Relationship Extraction Based on Encoder and Attention Mechanism[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 53 -60 .
[7] XIAO Yiqun, SONG Shuxiang, XIA Haiying. Fast Pedestrian Detection Method Based on Multi-Features    and Implementation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 61 -67 .
[8] WANG Xun, LI Tinghui, PAN Xiao, TIAN Yu. Image Segmentation Method Based on Improved Fuzzy C-means Clustering and Otsu Maximum Variance[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 68 -73 .
[9] ZHONG Xianggui, SUN Yue, WU Xianghua. Nearly CAP*-Subgroups and p-Supersolvability of Finite Groups[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 74 -78 .
[10] ZHU Yaping, QU Guorong, FAN Jianghua. The Existence of Solutions for Quasi-variational Inequalities by Using the Fixed Point Index Approach[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 79 -85 .