Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (6): 247-256.doi: 10.16088/j.issn.1001-6600.2021080902

Previous Articles    

Sequencing and Bioinformatic Analysis for Transcriptome of Shandan Sphallerocarpus racills Leaf

ZHANG Chunmei1,2*, YAN Fang2,3, SONG Hai2, ZHANG Xifeng1,2 , CHEN Ye1,2   

  1. 1. College of Agriculture and Ecological Engineering, Hexi University, Zhangye Gansu 734000, China;
    2. Key Laboratory of Hexi Corridor Resources Utilization of GanSu, Zhangye Gansu 734000, China;
    3. Ecological & Oasis Agricultural Research Institute of Hexi University, Zhangye Gansu 734000,China
  • Received:2021-08-09 Revised:2021-09-17 Online:2022-11-25 Published:2023-01-17

Abstract: Sphallerocarpusg racilis is considered as “second Panax Ginseng” in Compendium of Materia Medica. The high-throughput sequencing platform BGISEQ-500 was used to sequence the transcriptome of Huangshen (S. racills) leaf and transcriptome analysis software was used for assembly, and annotation. The results showed: 1) A total of 99 981 unigenes were obtained through de novo assembly,with total length of 113 850 816 bp, an average length of 1 138 bp and N50 of 1 874 bp. GC content accounted for 39.93%. 2) The unigenes were functionally annotated by searching against seven protein databases. There were 49 390 (NT:49.40%), 48 281 (SwissProt:48.29%), 61 116 (KOGdatabase:61.13%) and 55 859 (Pfam:55.87%) Unigenes for functional annotation,respectively. 3) Compared with NR database, 66 451 Unigene were annotated in the NR. It was found that S. gracilis had higher homology with Daucus carota subsp. sativus, but lower homology with other species. 4) 78 040 Unigeneswere annotated within 40 terms of three main GO (Gene Ontology) categories. According to function, they were divided into biological process, cellular component and molecular function, which included 15, 11 and 14 subclasses respectively, with the largest proportion of classes performing biological process. 5) For KEGG(Kyoto Encyclopedia of Genes and Genomes)analysis, 51 479 Unigenes were assigned to 20 known metabolic pathways. 6) 61 116 Unigenes were annotated in the KOG database and a total of 26 gene functional categories were obtained.Among them, the genes involved in general function, signal transduction mechanisms, translation, modification and protein transportation were the most abundant categories. 7) A total of 62 323 CDSs were detected by Transdecoder from the transcriptome. Moreover, a total of 17 308 SSRs(simple sequence repeats) from 13 256 Unigenes were identified from the transcriptome. Di-nucleotidere peat motif was the most abundant SSR, accounting for 38.83% (6 721 SSRs). 2 370 Unigenes encoding transcription factors were predicted. Conclusion: The study provided valuable information and abundant resources for revealing its genetic background, future functional genome analysis, molecular marker developmentand laid a foundation for comprehensive utilization and protection of S. racills.

Key words: Sphallerocarpusg racilis, transcriptome, functional gene, bioinformatics, SSR markers

CLC Number: 

  • S567.239
[1] 薛鸿燕. 山丹黄参化学成分及生物活性研究[D].兰州: 兰州理工大学, 2011.
[2] 贾恢先, 邹卿, 叶相清, 等. 山丹黄参的分布及微量元素含量研究[J].西北植物学报, 2001, 21(1): 188-190. DOI: 1000-4025-(2001)01-0188-03.
[3] 高春燕. 黄参籽精油、多酚的组成及其功能性研究[D].西安: 陕西师范大学, 2012.
[4] 王瑞娴, 李川. 全长转录组测序技术在非模式植物转录组学研究中的应用[J].分子植物育种, 2019, 17(2): 502-508. DOI: 10.13271/j.mpb.017.000502.
[5] LI S F, FAN C M, LI Y, et al. Effects of drought and salt-stresses on gene expression in Caragana korshinskii seedlings revealed by RNA-seq[J]. BMC Genomics, 2016, 17: 200. DOI: 10.1186/s12864-016-2562-0.
[6] CHEN W, YAO Q M, PATIL G B, et al. Identification and comparative analysis of differential gene expression in soybean leaf tissue under drought and floodingstress revealed by RNA-Seq[J]. Frontiers in Plant Science, 2016, 7: 1044. DOI: 10.3389/fpls.2016.01044.
[7] 崔凯, 吴伟伟, 刁其玉. 转录组测序技术的研究和应用进展[J].生物技术通报, 2019, 35(7): 1-9. DOI: 10.13560/j.cnki.biotech.bull.1985.2019-0374.
[8] FRANSSEN S U, SHRESTHA R P, BRUTIGAM A, et al. Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing[J]. BMC Genomics, 2011, 12: 227. DOI: 10.1186/1471-2164-12-227.
[9] METZKER M L. Sequencing technologies-the next generation[J]. Nature Reviews Genetics, 2010, 11(1): 31-46. DOI: 10.1038/nrg2626.
[10] LOPEZ-MAESTRE H, BRINZA L, MARCHET C, et al. SNP calling from RNA-seq data without a reference genome: identification, quantification, differential analysis and impact on the protein sequenc[J].Nucleic Acids Research, 2016, 44(19): e148. DOI: 10.1093/nar/gkw655.
[11] GRABHERR M G, HAAS B J, YASSOUR M, et al.Full-length transcriptome assembly from RNA-seq data without a reference genome[J].Nature Biotechnology, 2011, 29(7): 644-652. DOI: 10.1038/nbt.1883.
[12] 王光炯, 柳新红, 许大明, 等. 百山祖冷杉叶片转录组分析[J].江西农业大学学报, 2021, 43(2): 343-354. DOI: 10.13836/j.jjau.2021039.
[13] 慧芳, 刘秀岩, 李宗谕, 等. 转录组测序技术在药用植物研究中的应用[J].中草药, 2019, 50(24): 6149-6155. DOI: 10.7501/j.issn.0253-2670.2019.24.033.
[14] WHEAT C W.Rapidly developing functional genomics in ecological model systems via 454 transcriptome sequencing[J].Genetica, 2010, 138(4): 433-451. DOI: 10.1007/s10709-008-9326-y.
[15] 王继华, 黎俊荣, 蔡时可, 等. 肇实转录组测序及生物信息学分析[J].中药材, 2019, 42(11): 2513-2518. DOI: 10.13863/j.issn1001-4454.2019.11.008.
[16] 李聪, 郭天麒, 梁小红, 等. 植物ERFs类转录因子在逆境胁迫中的作用[J].生物技术通报, 2011(4): 1-6. DOI: 10.13560/j.cnki.biotech.bull.1985.2011.04.021.
[17] 贾昌路, 张瑶, 朱玲, 等. 转录组测序技术在生物测序中的应用研究进展[J].分子植物育种, 2015, 13(10): 2388-2394. DOI: 10.13271/j.mpb.013.002388.
[18] 王传琦, 孔稳稳, 李晶. 植物转录因子最新研究方法[J].生物技术通讯, 2013, 24(1): 118-123. DOI: 10.3969/j.issn.1009-0002.2013.01.028.
[19] 钟婵娟, 彭伟业, 王冰, 等. 植物逆境响应相关的C2H2型锌指蛋白研究进展[J].植物生理学报, 2020, 56(11): 2356-2366. DOI: 10.13592/j.cnki.ppj.2020.0171.
[20] 张桐, 李智强, 伍国强. WRKY转录因子在植物逆境响应中的作用[J].生物技术通报, 2021, 37(10): 203-215. DOI: 10.13560/j.cnki.biotech.bull.1985.2020-1481.
[21] 王华, 汪王微, 王冬良, 等. 杜鹃花叶片转录组测序数据组装及功能注释[J].浙江农业学报, 2018, 30(7): 1149-1159. DOI: 10.3969/j.issn.1004-1524.2018.07.07.
[22] 申玉晓. 玫瑰MYB转录因子调控类黄酮介导的逆境响应机制研究[D].武汉: 华中农业大学, 2019. DOI: 10.27158/d.cnki.ghznu.2019.000816.
[23] 刘静, 王翠平, 朱强, 等. 黑果枸杞bHLH转录因子家族的生物信息学分析[J].分子植物育种, 2020, 18(14): 4612-4623. DOI: 10.13271/j.mpb.018.004612.
[24] 郭仰东, 张磊, 李双桃, 等. 蔬菜作物应答非生物逆境胁迫的分子生物学研究进展[J].中国农业科学, 2018, 51(6): 1167-1181. DOI: 10.3864/j.issn.0578-1752.2018.06.015.
[25] JIN C, HUANG X S, LI K Q, et al. Overexpression of a bHLH1 transcriptionfactor of Pyrus ussuriensis confers enhanced cold tolerance and increases expression of stress-responsive genes[J]. Frontiersin Plant Science, 2016, 7: 441. DOI: 10.3389/fpls.2016.00441.
[1] ZHANG Limeng, LI Runting, NIE Xiaoning, LI Yuhua, LI Lin, LI Yameng, CHEN Longxin, WANG Linqing. Physicochemical Properties and Bioinformatics Analysis of Somatostatin Receptor 2 (SSTR2) [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 164-173.
[2] LIANG Jiayu, LIANG Yu, MA Jiangming. Research Progress of Forest Medicine Planting Pattern [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 366-375.
[3] WU Jun, OUYANG Aijia, ZHANG Lin. Phosphorylation Site Prediction Model Based on Multi-head Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 161-171.
[4] GUO Chen, ZHOU Fei , HAN Biao, PAN Cui, WU Jiemin, YANG Ting, SHANG Changhua. Cloning and Bioinformatics Analysis of LAP Gene from Pseudomonas [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 156-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] KUANG Xianyan, CHEN Ziru. Mixed Traffic Flow Model of Signalized Intersections Involving Pedestrian Comity[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 1 -15 .
[2] LIU Weiming, CHEN Gangmei, LIN Guanrong, LI Jingning. Coordination Control Method for Toll Station of Freeway and Adjacent Intersection[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 16 -26 .
[3] ZOU Yanli, WANG Yang, LIU Shusheng, YAO Fei. Study of Cascading Failure in the Grid under the Capacity Load Model with Neighbors Degree Information[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 27 -36 .
[4] XIE Lina, JIANG Pinqun, SONG Shuxiang, CEN Mingcan. A Low-Loss, Low-Noise, Wide-Tuned High-Order Cascade N-Path Filter[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 37 -44 .
[5] LUO Lan, ZHOU Nan, SI Jie. New Delay Partition Method for Robust Stability of Uncertain Cellular Neural Networks with Time-Varying Delays[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 45 -52 .
[6] WANG Jian, ZHENG Qifan, LI Chao, SHI Jing. Remote Supervision Relationship Extraction Based on Encoder and Attention Mechanism[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 53 -60 .
[7] XIAO Yiqun, SONG Shuxiang, XIA Haiying. Fast Pedestrian Detection Method Based on Multi-Features    and Implementation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 61 -67 .
[8] WANG Xun, LI Tinghui, PAN Xiao, TIAN Yu. Image Segmentation Method Based on Improved Fuzzy C-means Clustering and Otsu Maximum Variance[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 68 -73 .
[9] ZHONG Xianggui, SUN Yue, WU Xianghua. Nearly CAP*-Subgroups and p-Supersolvability of Finite Groups[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 74 -78 .
[10] ZHU Yaping, QU Guorong, FAN Jianghua. The Existence of Solutions for Quasi-variational Inequalities by Using the Fixed Point Index Approach[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 79 -85 .