Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (3): 92-101.doi: 10.16088/j.issn.1001-6600.2020030904

Previous Articles     Next Articles

Performance of Ru/ZrO2 Catalysts for Hydrogen Generation from Catalytic Hydrolysis of Ammonia Borane

SUN Haijie1, LIU Xingai1, CHEN Zhihao2*, CHEN Lingxia1*, ZHANG Lu1, MEI Yangyang1   

  1. 1. School of Chemistry and Chemical Engineering, Zhengzhou Normal University, Zhengzhou Henan 450044, China;
    2. Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou Henan 450001, China
  • Received:2020-03-09 Revised:2020-07-23 Published:2021-05-13

Abstract: ZrO2 supported Ru catalysts were synthesized with an impregnation-chemical reduction method using NaBH4 as the reducing agent. The prepared catalysts were evaluated for the hydrogen generation via catalytic hydrolysis of BH3NH3. Effect of catalytic activity was investigated by varying the impregnated Ru loading, amount of reducing agent, reduction temperature as well as the reaction conditions. It was found that the TOF (Turnover Frequency) of 38.4 mol/mol(Ru)·min was achieved by adjusting Ru loading to 0.4 at 303 K of reaction temperature, while the molar ratio of Ru to NaBH4 was 1:1.6. The Ru particle size of 3.2 nm was observed. Moreover, when the stirring speed was 450 r/min, external diffusion could be eliminated, leading to the highest reaction rate towards hydrogen generation. In addition, catalytic activity increased with enhancing the amount of used catalyst, indicating that catalytic hydrolysis of BH3NH3 towards hydrogen production was controlled by the interfacial reaction over the catalyst surface. Furthermore, with the reaction temperature increasing, it gets more suitable for the desorption of NaBO2, the side product of hydrolysis of BH3NH3, from the catalyst surface. This results in the enhancement of the reaction rate towards hydrogen formation. According to the kinetic calculation, it suggests that the reaction rate of hydrolysis of BH3NH3 towards hydrogen generation over Ru/ZrO2 is irrelevant to the concentration of BH3NH3. The activation energy is 66 kJ/mol.

Key words: Ru, ZrO2, catalyst, ammonia borane, hydrogen generation

CLC Number: 

  • TQ116
[1]杨兰, 罗威, 程功臻. 氨硼烷水解制氢的研究进展[J]. 大学化学, 2014, 29(6): 1-10. DOI:10.3969/j.issn.1000-8438.2014.06.001.
[2]李燕,邓雨真,俞晶铃, 等. 氨硼烷分解制氢及其再生的研究进展[J]. 化工进展,2019,38(12): 5330-5338. DOI:10.16085/j.issn.1000-6613.2019-0482.
[3]李历红,方志刚,赵振宁,等. 团簇Ni3CoP催化析氢活性研究[J]. 广西师范大学学学报(自然科学版),2019,37(1): 165-172. DOI:10.16088/j.issn.1001-6600.2019.01.019.
[4]孙海杰,陈凌霞,张玉凤,等. 钴-硼/二氧化锆催化剂催化硼氢化钠水解制氢研究[J]. 无机盐工业,2019,51(3): 72-76.
[5]孙海杰,黄振旭,王雅苹,等. 非晶态合金Ru-B/ZrO2催化剂催化硼氢化钠水解制氢性能的研究[J]. 化工新型材料,2018,46(1): 102-105.
[6]孙海杰,陈凌霞,黄振旭,等. 第四周期过渡金属催化硼氢化钠水解制氢研究[J]. 无机盐工业,2017,49(5): 14-17.
[7]李慧珍,王芃远,陈学年. 氨硼烷:一种高性能化学储氢材料[J]. 科学通报,2014,59(19): 1823-1837. DOI:10.1360/972013-1221.
[8]张帅,王斯瑶,姜召,等. 静电纺丝技术在氨硼烷水解脱氢催化剂制备中的应用[J]. 化工进展,2019,38(7): 3194-3206. DOI:10.16085/j.issn.1000-6613.2018-1606.
[9]马建丽,张晓霞,曹海燕,等. 氨硼烷热分解放氢的研究进展[J]. 化工新型材料,2016,44(5): 34-36.
[10]SONG Q, WANG W D, HU X W, et al. Ru nanoclusters confined in porous organic cages for catalytic hydrolysis of ammonia borane and tandem hydrogenation reaction[J]. Nanoscale, 2019, 11(44): 21513-21521. DOI:10.1039/C9NR08483E.
[11]ZHANG J, DONG Y N, LIU Q X, et al. Hierarchically alloyed Pd-Cu microarchitecture with tunable shapes: morphological engineering, and catalysis for hydrogen evolution reaction of ammonia borane[J]. International Journal of Hydrogen Energy, 2019, 44(57): 30226-30236. DOI:10.1016/j.ijhydene.2019.09.213.
[12]FU W Z, HAN C, LI D L, et al. Polyoxometalates-engineered hydrogen generation rate and durability of Pt/CNT catalysts from ammonia borane[J]. Journal of Energy Chemistry, 2020, 41(2):142-148. DOI:10.1016/j.jechem.2019.05.014.
[13]RAKAP M. PVP-stabilized Ru-Rh nanoparticles as highly efficient catalysts forhydrogen generation from hydrolysis of ammonia borane[J]. Journal of Alloys and Compounds, 2015, 649: 1025-1030. DOI:10.1016/j.jallcom.2015.07.249.
[14]CAO N, HU K, LUO W, et al. RuCu nanoparticles supported on graphene: a highly efficient catalyst for hydrolysis of ammonia borane[J]. Journal of Alloys and Compounds, 2014, 590:241-246. DOI:10.1016/j.jallcom.2013.12.134.
[15]FAN G Y, LIU Q Q, TANG D M et al. Nanodiamond supported Ru nanoparticles as an effective catalyst for hydrogen evolution from hydrolysis of ammonia borane[J]. International Journal of Hydrogen Energy, 2016, 41(3): 1542-1549. DOI:10.1016/j.ijhydene.2015.10.083.
[16]DU C, AO Q, CAO N, et al. Facile synthesis of monodisperse ruthenium nanoparticles supported on graphene for hydrogen generation from hydrolysis of ammonia borane[J]. International Journal of Hydrogen Energy, 2015, 40(18): 6180-6187. DOI:10.1016/j.ijhydene.2015.03.070.
[17]AKBAYRAK S, ÓZKAR S. Ruthenium(0) nanoparticles supported on multiwalled carbon nanotube as highly active catalyst for hydrogen generation from ammonia-borane[J]. ACS Applied Materials & Interfaces, 2012, 4(11): 6302-6310. DOI:10.1021/am.3019146.
[18]YANG L, LUO W, CHENG G Z. Graphene-supported Ag-based core-shell nanoparticles for hydrogen generation in hydrolysis of ammonia borane and methylamine borane[J]. ACS Applied Materials & Interfaces, 2013, 5(16): 8231-8240. DOI:10.1021/am402373p.
[19]RAKAP M, ÓZKAR S. Hydroxyapatite-supported palladium(0)nanoclusters as effective and reusable catalyst for hydrogen generation from the hydrolysis of ammonia-borane[J]. International Journal of Hydrogen Energy, 2011, 36(12): 7019-7027. DOI:10.1016/j.ijhydene.2011.03.017
[20]RAKAP M, ÓZKAR S. Zeolite confined palladium(0) nanoclusters as effective and reusable catalyst for hydrogen generation from the hydrolysis of ammonia-borane[J]. International Journal of Hydrogen Energy, 2010, 35(3): 1305-1312. DOI:10.1016/j.ijhydene.2009.11.056.
[21]CHANDRA M, XU Q. Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts[J]. Journal of Power Sources, 2007, 168(1): 135-142. DOI:10.1016/j.jpowsour.2007.03.015.
[22]AKBAYRAK S, TANYILDIZI S, MORKAN I, et al. Ruthenium(0) nanoparticles supported on nanotitania as highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane[J]. International Journal of Hydrogen Energy, 2014, 39(18): 9628-9637. DOI:10.1016/j.ijhydene.2014.04.091.
[23]孙海杰,陈凌霞,陈秀丽,等. ZrO2织构性质对Ru-B/ZrO2催化剂的结构及其苯选择加氢性能的影响[J]. 石油化工,2015,44(9): 1066-1070. DOI:10.3969/j.issn.1000-8144.2015.09.007.
[24]刘仲毅,孙海杰,王东斌,等. 纳米ZrO2作分散剂的Ru-Zn催化剂上苯选择加氢制环己烯[J]. 催化学报,2010,31(2): 150-152. DOI:10.3724/SP.J.1088.2010.91039.
[25]陈健民,卢章辉,熊丽华. Ru/Ce(OH)CO3纳米复合材料催化氨硼烷水解产氢[J]. 无机化学学报,2016,32(10): 1816-1824. DOI:10.11862/CJIC.2016.228.
[26]邵阳阳,靳惠明,俞亮,等. Mo 掺杂 Co-B 非晶态合金的制备及催化硼氢化钠水解制氢性能[J]. 材料导报,2020,34(1): 2063-2066. DOI:10.11896/cldb.18090130.
[27]孙海杰,陈凌霞,黄振旭,等. Ru-Zn催化剂在苯选择加氢制环己烯反应中的粒径效应[J]. 高等学校化学学报,2015,36(10): 1969-1976. DOI:10.7503/cjcu20150288.
[28]RACHIERO G P, DEMIRCI U B, MIELE P. Bimetallic RuCo and RuCu catalysts supported on γ-Al2O3. A comparative study of their activity in hydrolysis of ammonia-borane[J]. International Journal of Hydrogen Energy, 2011, 36(12): 7051-7065. DOI:10.1016/j.ijhydene.2011.03.009.
[29]朱玉玲,郑修成,刘蒲. 磁性花生壳负载钯催化剂的制备及催化氨硼烷释氢性能[J]. 信阳师范学院学报(自然科学版),2019,32(2): 276-280. DOI:10.3969/j.issn.1003-0972.2019.02.018.
[30]BASU S, BROCKMAN A, GAGARE P, et al. Chemical kinetics of Ru-catalyzed ammonia borane hydrolysis[J]. Journal of Power Sources, 2009, 188(1): 238-243. DOI:10.1016/j.jpowsour.2008.11.085.
[31]孙海杰,陈秀丽,黄振旭,等. NaOH浓度对苯选择加氢制环己烯Ru-Zn催化剂性能的影响[J]. 化工学报,2016,67(4): 1324-1332. DOI:10.11949/j.issn.0438-1157.20151370.
[32]HU S C, CHEN Y W. Partial hydrogenation of benzene to cyclohexene on ruthenium catalysts supported on La2O3-ZnO binary oxides[J]. Industrial & Engineering Chemistry Research, 1997, 36(12): 5153-5159.
[33]DONG H, YANG H X, AI X P, et al. Hydrogen production from catalytic hydrolysis of sodium borohydride solution using nickel boride catalyst[J]. International Journal of Hydrogen Energy, 2003, 28(10): 1095-1100. DOI:10.1016/S0360-3199(02)00235-5.
[34]RACHIERO G P, DEMIRCI U B, MIELE P. Facile synthesis by polyol method of a ruthenium catalyst supported on γ-Al2O3 for hydrolytic dehydrogenation of ammonia borane[J]. Catalysis Today, 2011, 170(1): 85-92. DOI:10.1016/j.cattod.2011.01.040
[35]CAN H, METIN Ó. A facile synthesis of nearly monodisperse ruthenium nanoparticles and their catalysis in the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage[J]. Applied Catalysis B: Environmental, 2012, 125: 304-310. DOI:10.1016/j.apcatb.2012.05.048.
[36]TONBUL Y, AKBAYRAK S, ÓZKAR S.Palladium(0) nanoparticles supported on ceria: highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane[J].International Journal of Hydrogen Energy, 2016, 41(26): 11154-11162. DOI:10.1016/j.ijhydene.2016.04.058.
[37]KILIÇ B,ŞENCANLI S,METIN Ó. Hydrolytic dehydrogenation of ammonia borane catalyzed by reduced graphene oxide supported monodisperse palladium nanoparticles: high activity and detailed reaction kinetics[J].Journal of Molecular Catalysis A: Chemistry, 2012, 361/362: 104-110. DOI:10.1016/j.molcata.2012.05.008.
[38]RAKAP M, ÓZKAR S.Hydroxyapatite-supported palladium(0)nanoclusters as effective and reusable catalyst for hydrogen generation from the hydrolysis of ammonia-borane[J].International Journal of Hydrogen Energy, 2011, 36(12): 7019-7027. DOI:10.1016/j.ijhydene.2011.03.017.
[39]XI P X, CHEN F J, XIE G Q, et al.Surfactant free RGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage[J].Nanoscale, 2012, 4(18): 5597-5601. DOI:10.1039/c2nr31010d.
[40]孙海杰,刘欣改,陈志浩,等. 二氧化硅负载钌催化剂催化氨硼烷水解产氢研究[J]. 无机盐工业,2020,52(5): 81-85. DOI:10.11962/1006-4990.2019-0398.
[1] DONG Xiaoyan, LIANG Qiufang, FENG Ping. Drug Metabolism and Evolution of CYP2D Subfamily Genes in Primates [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 131-138.
[2] HUANG Song, WANG Mengfei, LI Yanlin. Flow Space Features of Tourism Information Flow Based on Online Platforms:A Case Study of Core Cities in the Pearl River-West River Economic Belt [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 162-173.
[3] CHENG Rui, HE Mingxian, ZHONG Chunying, LUO Shuyi, WU Zhengjun. Comparison of Swimming Ability between Wild and Captive Breeding Shinisaurus crocodilurus [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 79-86.
[4] ZHANG Hui, LIU Hongying , ZHANG Yuning, MA Jiangming, MO Yanhua, LING Tianwang, YANG Zhangqi, LI Mingjin. Life Form Spectrum and Leaf Physiognomy of Understory Woody Species in the Near-natural Restoration Process of Pinus massoniana Plantations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 119-127.
[5] TANG Rongchai, WU Xiru. Real-time Detection of Passion Fruit Based on Improved YOLO-V3 Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 32-39.
[6] ZHANG Ruchang, QIU Jie, WANG Mingtang, CHEN Qingfeng. Classification of Protein 3D Structure Based on Adaptive Local Features [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 40-50.
[7] WANG Yue, YE Hongyan, LEI Jun, SUO Hongmin. Infinitely Many Classical Solutions for Kirchhoff Type Problem with Linear Term [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 65-73.
[8] GAO Hui, FANG Jiangping, LIU Lijuan, LIU Xi. Relationship between Spatial Structure and Environment of Original Picea likiangensis var. linzhiensis Forest in Tibet [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 95-103.
[9] XIE Tingting, XIE Yao, NI Qingling. Synthesis, Characterization and Crystal Structures of Complexes ContainingOrganic Phosphine Gold Acetylene and Triazoles [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 92-99.
[10] YAN Kejian, HU Qimin, LI Jianling, DANG Guilan, WU Lei. New Records of Rubiaceae from Guangxi, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 109-112.
[11] XIU Guilin, ZHANG Bowei, LIU Fan, LUO Ao. Server Trusted Framework Based on Trusted CPU Chip [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 43-50.
[12] HE Mingxian, XU Shulin, LI Shilin, LUO Shuyi, YANG Chunsheng,CHENG Rui, WU Zhengjun. Correlation between Locomotor Performance and Body Measurements of Captive Breeding Shinisaurus crocodilurus [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 120-126.
[13] TANG Chuangbin, WANG Guohai, SHI Zepan, LI Shengqiang, HUANG Zhenhua, WANG Zhenxing, ZHOU Qihai. Activity Rhythm and Time Budget of the Red-bellied Squirrels (Callosciurus erythralus) Based on Infrared Camera Data [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 133-139.
[14] ZHANG Jinlei, LUO Yuling, FU Qiang. Predicting Financial Time Series Based on Gated Recurrent Unit Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 82-89.
[15] ZHANG Xiaoxiao, WANG Miaomiao, FENG Shuzhen, QIU Husen, GAI Shuangshuang, ZHAO Lei, HU Yajun, HE Xunyang, LU Zujun. Effects of Lithology and Vegetation Type on the Soil AM Fungi Community in Karst Region [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 158-167.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHEN Menghua,LIU Min,WANG Ning. Predictive Power of the Weizscker-Skyrme Nuclear Mass Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 1 -8 .
[2] WANG Yi, ZOU Yanli, LI Ke, HUANG Li. The Influence of the Distributed Power Station Connection Modeson the Power Grid Synchronization[J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 24 -31 .
[3] WEI Hongjin, ZHOU Xile, SHANG Hui, YAN Yuehong. New Records of Ferns from Guangxi, China(Ⅲ)[J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 98 -105 .
[4] BAO Jinping,YU Keli,LI Yonglan,ZHENG Lianbin. Lean Mass Index and Fat Mass Index of Lingao,China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 142 -147 .
[5] LIU Qingye, WANG Hua, HUANG Danhua, HE Shihe, LI Jiao, LUO Junheng, ZHANG Xinghui, WEN Guiqing, LIANG Aihui, JIANG Zhiliang. Determination of Trace Chromium(Ⅵ) by Carbon NanoparticlesResonance Energy Transfer Rayleigh Scattering[J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 128 -133 .
[6] XU Lun-hui, WANG Qing, ZHU Qun-qiang, WU Yun. Research on Optimization of Urban Passenger Transport Based on Carbon Footprint[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 1 -5 .
[7] LI Shan-shan, FEI Ming-gang. Hermite Polynomials Related to the Dunkl-Clifford Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 73 -80 .
[8] LIANG Shi-chu, SHI Gui-yu, WEI Yu-jing, LI Ming-xia. Seasonal Changes of Physiological Anti-adversity Index in the Leaves of Eucalyptus[J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(3): 116 -120 .
[9] DENG Jin-hong, ZHAO Jun-ling. SS Chaotic Set in Set of Non-recurrent Points[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 40 -44 .
[10] SONG Ting, XIE Xian-zhong, HU Xiao-feng. SNR Wall of Reporting Channel for Cluster-based Spectrum Sensing and Its Performance Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 169 -176 .