Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (3): 131-138.doi: 10.16088/j.issn.1001-6600.2020121604

Previous Articles     Next Articles

Drug Metabolism and Evolution of CYP2D Subfamily Genes in Primates

DONG Xiaoyan1,2, LIANG Qiufang1,2, FENG Ping1,2*   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. College of Life Sciences, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2020-12-16 Revised:2021-01-30 Published:2021-05-13

Abstract: CYP2D subfamily genes are commonly found in primates and play an important role in drug metabolism. However, the effect of CYP2D enzyme on the metabolism of the same drug varies in different regions and races, and the CYP2D enzyme in non-human primates metabolizes some drugs more efficiently than that in humans. In addition, during the long evolutionary process, primate CYP2D subfamily genes will experience frequent gene duplication or gene loss, leading to differences in the number of CYP2D subfamily genes, but it has not been determined whether such differences are related to the species’ genetic relationship. In this study, we reviewed the studies on drug metabolism and evolution of CYP2D subfamily genes in primates, in order to provide some theoretical basis for the realization of individualized medication and precise therapy, and further understand the evolution of CYP2D subfamily genes in primates.

Key words: CYP2D subfamily gene, primates, drug metabolism, polymorphism, evolution

CLC Number: 

  • R965
[1]FINNIGAN J D, YOUNG C, COOK D J, et al. Cytochromes P450(P450s): A review of the class system with a focus on prokaryotic P450s[J]. Advances in Protein Chemistry and Structural Biology, 2020, 122: 289-320. DOI:10.1016/bs.apcsb. 2020.06.005.
[2]NELSON D R, KOYMANS L, KAMATAKI T, et al. P450 superfamily: Update on new sequences, gene mapping, accession numbers and nomenclature[J]. Pharmacogenetics, 1996, 6(1): 1-42. DOI:10.1097/00008571-199602000-00002.
[3]KAWASHIMA A, SATTA Y. Substrate-dependent evolution of cytochrome P450: Rapid turnover of the detoxification-type and conservation of the biosynthesis-type[J]. PLoS ONE, 2014, 9(6): e100059. DOI:10.1371/journal.pone.0100059.
[4]STIPP M C, ACCO A. Involvement of cytochrome P450 enzymes in inflammation and cancer: A review[J]. Cancer Chemotherapy and Pharmacology, 2021, 87: 295-309. DOI:10.1007/s00280-020-04181-2.
[5]MARTIGNONI M, GROOTHUIS G M M, RUBEN D K. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction[J]. Expert Opinion on Drug Metabolism & Toxicology, 2006, 2(6): 875-894. DOI:10.1517/17425255.2.6.875.
[6]TAYLOR C, CROSBY I, YIP V, et al. A review of the important role of CYP2D6 in pharmacogenomics[J]. Genes, 2020, 11(11):e1295. DOI:10.3390/genes11111295.
[7]FENG P, LIU Z J. Complex gene expansion of the CYP2D gene subfamily[J]. Ecology and Evolution, 2018, 8(22): 11022-11030. DOI:10.1002/ece3.4568.
[8]ALMEIDA D, MALDONADO E, KHAN I, et al. Whole-genome identification, phylogeny, and evolution of the cytochrome P450 Family 2 (CYP2) subfamilies in birds[J]. Genome Biology and Evolution, 2016, 8(4): 1115-1131. DOI:10.1093/gbe/evw041.
[9]YASUKOCHI Y, SATTA Y. Evolution of the CYP2D gene cluster in humans and four non-human primates[J]. Genes & Genetic Systems, 2011, 86(2): 109-116. DOI:10.1266/ggs.86.109.
[10]冯平. CYP2D亚家族基因在脊椎动物中的研究进展[J]. 生物学通报, 2018, 53(2): 6-8. DOI:10.3969/j.issn.0006-3193. 2018.02.003.
[11]HADUCH A, BROMEK E, WÓJCIKOWSKI J, et al. Melatonin supports CYP2D-mediated serotonin synthesis in the brain[J]. Drug Metabolism and Disposition, 2016, 44(3): 445-452. DOI:10.1124/dmd.115.067413.
[12]芦树军, 宋春雨. CYP2D6基因多态性对曲马多术后镇痛影响的研究进展[J]. 疑难病杂志, 2013,12(2): 163-165. DOI:10.3969/j.issn.1671-6450.2013.02.040.
[13]WEN Q H, ZHANG Z, CAI W K, et al. The associations between CYP2D6*10 C188T polymorphism and pharmacokinetics and clinical outcomes of tramadol: A systematic review and meta-analysis[J]. Pain Medicine, 2020, 21(12): 3679-3690. DOI:10.1093/pm/pnaa140.
[14]LOCATELLI I, KASTELIC M, KOPRIVŠEK J, et al. A population pharmacokinetic evaluation of the influence of CYP2D6 genotype on risperidone metabolism in patients with acute episode of schizophrenia[J]. European Journal of Pharmaceutical Sciences, 2010, 41(2): 289-298. DOI:10.1016/j.ejps.2010.06.016.
[15]BROOKS J D, COMEN E A, REINER A S, et al. CYP2D6 phenotype, tamoxifen, and risk of contralateral breast cancer in the WECARE study[J]. Breast Cancer Research, 2018, 20(1): 149. DOI:10.1186/s13058-018-1083-y.
[16]王玉文, 周国岭, 刘艳, 等. CYP2D6基因多态性与托莫西汀治疗ADHD疗效的关联性研究进展[J]. 中国现代医生, 2018, 56(20): 165-168.
[17]MANKOWSKI D C, LADDISON K J, CHRISTOPHERSON P A, et al. Molecular cloning, expression, and characterization of CYP2D17 from cynomolgus monkey liver[J]. Archives of Biochemistry and Biophysics, 1999, 372(1): 189-196. DOI:10.1006/abbi.1999.1506.
[18]UNO Y, UEHARA S, KOHARA S, et al. Cynomolgus monkey CYP2D44 newly identified in liver, metabolizes bufuralol, and dextromethorphan[J]. Drug Metabolism and Disposition, 2010, 38(9): 1486-1492. DOI:10.1124/dmd.110.033274.
[19]PERELMAN P, JOHNSON W E, ROOS C, et al. A molecular phylogeny of living primates[J]. PLoS Genetics, 2011, 7(3): e1001342. DOI:10.1371/journal.pgen.1001342.
[20]KIMURA S, UMENO M, SKODA R C, et al. The human debrisoquine 4-hydroxylase (CYP2D) locus: Sequence and identification of the polymorphic CYP2D6 gene, a related gene, and a pseudogene[J]. American Journal of Human Genetics, 1989, 45(6): 889-904.
[21]TWIST G P, GAEDIGK A, MILLER N A, et al. Constellation: a tool for rapid, automated phenotype assignment of a highly polymorphic pharmacogene, CYP2D6, from whole-genome sequences[J]. NPJ Genomic Medicine, 2017, 2(1): 16039. DOI:10.1038/npjgenmed.2015.7.
[22]CHANEY M E, ROMINE M G, PIONTKIVSKA H, et al. Diversifying selection detected in only a minority of xenobiotic-metabolizing CYP1-3 genes among primate species[J]. Xenobiotica, 2020, 50(12): 1406-1412. DOI:10.1080/00498254.2020.1785580.
[23]INGELMAN-SUNDBERG M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): Clinical consequences, evolutionary aspects and functional diversity[J]. Pharmacogenomics Journal, 2005, 5(1): 6-13. DOI:10.1038/sj.tpj.6500285.
[24]EBISAWA A, HIRATSUKA M, SAKUYAMA K, et al. Two novel single nucleotide polymorphisms (SNPs) of the CYP2D6 gene in Japanese individuals[J]. Drug Metabolism and Pharmacokinetics, 2005, 20(4): 294-299. DOI:10.2133/dmpk.20.294.
[25]TOSCANO C, KLEIN K, BLIEVERNICHT J, et al. Impaired expression of CYP2D6 in intermediate metabolizers carrying the*41 allele caused by the intronic SNP 2988G>A: evidence for modulation of splicing events[J]. Pharmacogenetics and Genomics, 2006, 16(10): 755-766. DOI:10.1097/01.fpc.0000230112.96086.e0.
[26]SAKUYAMA K, SASAKI T, UJIIE S, et al. Functional characterization of 17 CYP2D6 allelic variants (CYP2D6.2, 10, 14A-B, 18, 27, 36, 39, 47-51, 53-55, and 57)[J]. Drug Metabolism and Disposition, 2008, 36(12): 2460-2467. DOI:10.1124/dmd.108.023242.
[27]BRADFORD D L. CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants[J]. Pharmacogenomics, 2002, 3(2): 229-243. DOI:10.1517/14622416.3.2.229.
[28]LIAU Y L, MAGGO S, MILLER A L, et al. Nanopore sequencing of the pharmacogene CYP2D6 allows simultaneous haplotyping and detection of duplications[J]. Pharmacogenomics, 2019, 20(14): 1033-1047. DOI:10.2217/pgs-2019-0080.
[29]RAIMUNDO S, TOSCANO C, KLEIN K, et al. A novel intronic mutation, 2988G>A, with high predictivity for impaired dunction of cytochrome P450 2D6 in white subjects[J]. Clinical Pharmacology & Therapeutics, 2004, 76(2): 128-138. DOI:10.1016/j.clpt.2004.04.009.
[30]金灵. 依据喹硫平个体化药物代谢信息进行临床治疗的研究[D]. 陕西: 西安医学院, 2018.
[31]马昕驰,张娜. CYP2D6基因型多态性及其对他莫昔芬治疗的影响研究进展[J]. 肿瘤学杂志, 2020, 26(6): 528-533.
[32]BATISTAKI C, CHRONA E, KOSTROGLOU A, et al. CYP2D6 basic genotyping of patients with chronic pain receiving tramadol or codeine: A study in a greek cohort[J]. Pain Medicine, 2020, 21(11): 3199-32042. DOI:10.1093/pm/pnaa122.
[33]曾雷, 元静, 卫芋君, 等. CYP2D6基因多态性与分裂症易感性及利培酮治疗反应的研究进展[J]. 国际精神病学杂志, 2018, 45(1): 18-21.
[34]黄艳, 刘锦平. CYP2D6基因多态性与他莫昔芬代谢及疗效的相关性研究进展[J]. 实用医院临床杂志, 2015, 12(3): 170-173.
[35]ANSTENSRUD K A, MOLDEN E, HAUG H J, et al. Impact of genotype-predicted CYP2D6 metabolism on clinical effects and tolerability of metoprolol in patients after myocardial infarction-a prospective observational study[J]. European Journal of Clinical Pharmacology, 2020, 76(1): 673-683. DOI:10.1007/s00228-020-02832-0.
[36]胡焱垚, 王爽, 杨军, 等. CYP2D6、CYP3A5的基因多态性与心血管药物代谢的临床研究进展[J]. 现代养生, 2019(24): 63-64.
[37]SENDA C, YAMAURA Y, KOBAYASHI K, et al. Influence of the CYP2D6*10 allele on the metabolism of mexiletine by human liver microsomes[J]. British Journal of Clinical Pharmacology, 2015, 52(1): 100-103. DOI:10.1046/j.0306-5251.2001.01411.x.
[38]张泓波, 李宝群, 王瑞婷, 等. 细胞色素氧化酶CYP2D6的研究进展[J]. 承德医学院学报, 2005, 22(1): 72-74. DOI:10.15921/j.cnki.cyxb.2005.01.037.
[39]BANK P C D, SWEN J J, GUCHELAAR H J. Estimated nationwide impact of implementing a preemptive pharmacogenetic panel approach to guide drug prescribing in primary care in The Netherlands[J]. BMC Medicine, 2019, 17: 110. DOI:10.1186/s12916-019-1342-5.
[40]杨丽蓉, 刘天龙, 刘小雷. CYP2D6*10等位基因多态性对文拉法辛血药浓度的影响[J]. 中南药学, 2013, 11(1): 23-27.
[41]杨帆, 仝利俊, 马睿婷. CYP2D6基因多态性对个体用药影响的研究进展[J]. 世界最新医学信息文摘, 2018, 18(92): 32-34. DOI:10.19613/j.cnki.1671-3141.2018.92.014.
[42]COLBURN D E, GILES F J, OLADOVICH D, et al. In vitro evaluation of cytochrome P450-mediated drug interactions between cytarabine, idarubicin, itraconazole and caspofungin[J]. Hematology, 2004, 9(3): 217-221. DOI:10.1080/10245330410001701585.
[43]ABDULJALIL K, FRANK D, GAEDIGK A, et al. Assessment of activity levels for CYP2D6*1, CYP2D6*2, and CYP2D6*41 genes by population pharmacokinetics of dextromethorphan[J]. Clinical Pharmacology & Therapeutics, 2010, 88(5): 643-651. DOI:10.1038/clpt.2010.137.
[44]BOYLE K L, ROSENBAUM C D. Oxycodone overdose in the pediatric population: case files of the University of Massachusetts Medical Toxicology Fellowship[J]. Journal of Medical Toxicology, 2014, 10(3): 280-285. DOI:10.1007/s13181-014-0394-3.
[45]COOKE B R, ANNIE B S W, RICHARD C Z, et al. Debrisoquine metabolism and CYP2D expression in marmoset liver microsomes[J]. Drug Metabolism and Disposition, 2012, 40(1):70-75. DOI:10.1124/dmd.111.041566.
[46]YASUKOCHI Y, SATTA Y. Molecular evolution of the CYP2D subfamily in primates: purifying selection on substrate recognition sites without the frequent or long-tract gene conversion[J]. Genome Biology and Evolution, 2015, 7(4): 1053-1067. DOI:10.1093/gbe/evv056.
[47]GAEDIGK A. Complexities of CYP2D6 gene analysis and interpretation[J]. International Review of Psychiatry, 2013, 25(5): 534-553. DOI:10.3109/09540261.2013.825581.
[48]DLUGAUSKAS E, LENGVENYTE A, STRUMILA R, et al. Poor CYP2D6 and ultrarapid CYP2C19 metabolizer: Clinical challenge in psychiatric treatment[J]. European Psychiatry, 2017, 41(S1): S163. DOI:10.1016/j.eurpsy.2017.01.2042.
[49]RAVINDRANATH V, KOMMADDI R P, PAI H V. Unique cytochromes P450 in human brain: implication in disease pathogenesis[J]. Journal of Neural Transmission, 2006, 70(Sup): 167-171. DOI:10.1007/978-3-211-45295-0_26.
[50]张咏莉, 崔玉强, 汪向升, 等. 黄芪颗粒和黄芪注射液对CYP1A2、CYP2D、CYP2C亚酶活性影响的实验研究[J]. 中国药理学通报, 2013, 29(4): 512-519.
[1] LIU Jing, BIAN Xun. Characteristics of the Orthoptera Mitogenome and Its Application [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 17-28.
[2] XU Yilan, ZHONG Dandan, DU Xuesong, XIE Yandong, LIU Jingjie, SUN Yue, BIN Shiyu. Correlation Analysis of Polymorphism and Its Cold Tolerance Traits TCP-1-eta Gene of GIFT Tilapia (Oreochromis niloticus) [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 112-117.
[3] LÜ Panlong,WENG Xiaoxiong, PENG Xinjian. Public Traffic Passenger Recognition Based on Differential Evolution Algorithm SVM [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 106-114.
[4] BIN Shiyu, ZHONG Dandan, DU Xuesong,ZHANG Yongde, LIN Yong, HUANG Yin,WEN Luting. Correlation Analysis of Polymorphism and Its Cold Tolerance Traits HSP70 Gene of GIFT Tilapia (Oreochromis niloticus) [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 211-217.
[5] SUN Kang, QUAN Hongjun. Evolutionary Analysis of the Majority Game [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(2): 1-7.
[6] QIN Sigang, DUAN Hanming. Study on the Spatial Evolution and Trend of Bank Branches in Xi’an City [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 45-51.
[7] LEI Lin, LUO Xiao-yong. A Novel Real-coded Quantum-inspired Evolutionary Algorithm and Its Application [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 23-27.
[8] HU Yu-wen, XU Jiu-cheng, SUN Lin. Decision Evolution Sets [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 23-29.
[9] LIAO Hai-bo, WAN Zhong-ying, WANG Ming-wen. Projection Pursuit Model of Immune Evolution and Its ApplicationtoText Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 123-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] QIN Yingying, QI Guangchao, LIANG Shichu. Effects of Eichhornia crassipes Aqueous Extracts on Seed Germination of Ottelia acuminata var. jingxiensis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 87 -92 .
[2] LIN Yongsheng, PEI Jianguo, ZOU Shengzhang, DU Yuchao, LU Li. Red Bed Karst and Its Hydrochemical Characteristics of Groundwater in the Downstream of Qingjiang River, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 113 -120 .
[3] WAN Lei,LUO Yuling,HUANG Xingyue. Monitoring Platform for the Hardware Spike Neural Networks[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 9 -16 .
[4] LIN Yue. The Fault Diagnosis of Charging Piles Based on Hybrid AP-HMM Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 25 -33 .
[5] XIA Haiying,LIU Weitao,ZHU Yongjian. An Improved Fast SUSAN Chessboard Corner Detection Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 44 -52 .
[6] MENG Qi,SHEN Hongtao,MAO Liqiang,LIANG Weigang,ZHAO Zizhen,LIANG Zhaoyan, LAI Mingfeng,HUANG Baojian,LI Shizhuo,HE Ming,JIANG Shan. Determination of Exposure Age of Tiankeng, Leye County of Guangxi by Accelerator Mass Spectrometry[J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(1): 16 -20 .
[7] YE Ju, SUN Liqing, JI Shouxiang. Response Surface Optimization of Flavonoids Extraction from Nepeta coerulescens[J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(1): 62 -68 .
[8] GE Lina, LIU Jinhui. Privacy Preserving Method Based on k-isomorphism and Local Randomization[J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 1 -8 .
[9] TANG Zhenjun. Image Hashing Algorithm Based on PCA Feature Distance[J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 9 -18 .
[10] ZHANG Fang. Ecological Landscape Patterns in Ebinur Lake Region Based on Remote Sensing[J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 156 -164 .