Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (3): 131-138.doi: 10.16088/j.issn.1001-6600.2020121604
Previous Articles Next Articles
DONG Xiaoyan1,2, LIANG Qiufang1,2, FENG Ping1,2*
CLC Number:
[1]FINNIGAN J D, YOUNG C, COOK D J, et al. Cytochromes P450(P450s): A review of the class system with a focus on prokaryotic P450s[J]. Advances in Protein Chemistry and Structural Biology, 2020, 122: 289-320. DOI:10.1016/bs.apcsb. 2020.06.005. [2]NELSON D R, KOYMANS L, KAMATAKI T, et al. P450 superfamily: Update on new sequences, gene mapping, accession numbers and nomenclature[J]. Pharmacogenetics, 1996, 6(1): 1-42. DOI:10.1097/00008571-199602000-00002. [3]KAWASHIMA A, SATTA Y. Substrate-dependent evolution of cytochrome P450: Rapid turnover of the detoxification-type and conservation of the biosynthesis-type[J]. PLoS ONE, 2014, 9(6): e100059. DOI:10.1371/journal.pone.0100059. [4]STIPP M C, ACCO A. Involvement of cytochrome P450 enzymes in inflammation and cancer: A review[J]. Cancer Chemotherapy and Pharmacology, 2021, 87: 295-309. DOI:10.1007/s00280-020-04181-2. [5]MARTIGNONI M, GROOTHUIS G M M, RUBEN D K. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction[J]. Expert Opinion on Drug Metabolism & Toxicology, 2006, 2(6): 875-894. DOI:10.1517/17425255.2.6.875. [6]TAYLOR C, CROSBY I, YIP V, et al. A review of the important role of CYP2D6 in pharmacogenomics[J]. Genes, 2020, 11(11):e1295. DOI:10.3390/genes11111295. [7]FENG P, LIU Z J. Complex gene expansion of the CYP2D gene subfamily[J]. Ecology and Evolution, 2018, 8(22): 11022-11030. DOI:10.1002/ece3.4568. [8]ALMEIDA D, MALDONADO E, KHAN I, et al. Whole-genome identification, phylogeny, and evolution of the cytochrome P450 Family 2 (CYP2) subfamilies in birds[J]. Genome Biology and Evolution, 2016, 8(4): 1115-1131. DOI:10.1093/gbe/evw041. [9]YASUKOCHI Y, SATTA Y. Evolution of the CYP2D gene cluster in humans and four non-human primates[J]. Genes & Genetic Systems, 2011, 86(2): 109-116. DOI:10.1266/ggs.86.109. [10]冯平. CYP2D亚家族基因在脊椎动物中的研究进展[J]. 生物学通报, 2018, 53(2): 6-8. DOI:10.3969/j.issn.0006-3193. 2018.02.003. [11]HADUCH A, BROMEK E, WÓJCIKOWSKI J, et al. Melatonin supports CYP2D-mediated serotonin synthesis in the brain[J]. Drug Metabolism and Disposition, 2016, 44(3): 445-452. DOI:10.1124/dmd.115.067413. [12]芦树军, 宋春雨. CYP2D6基因多态性对曲马多术后镇痛影响的研究进展[J]. 疑难病杂志, 2013,12(2): 163-165. DOI:10.3969/j.issn.1671-6450.2013.02.040. [13]WEN Q H, ZHANG Z, CAI W K, et al. The associations between CYP2D6*10 C188T polymorphism and pharmacokinetics and clinical outcomes of tramadol: A systematic review and meta-analysis[J]. Pain Medicine, 2020, 21(12): 3679-3690. DOI:10.1093/pm/pnaa140. [14]LOCATELLI I, KASTELIC M, KOPRIVŠEK J, et al. A population pharmacokinetic evaluation of the influence of CYP2D6 genotype on risperidone metabolism in patients with acute episode of schizophrenia[J]. European Journal of Pharmaceutical Sciences, 2010, 41(2): 289-298. DOI:10.1016/j.ejps.2010.06.016. [15]BROOKS J D, COMEN E A, REINER A S, et al. CYP2D6 phenotype, tamoxifen, and risk of contralateral breast cancer in the WECARE study[J]. Breast Cancer Research, 2018, 20(1): 149. DOI:10.1186/s13058-018-1083-y. [16]王玉文, 周国岭, 刘艳, 等. CYP2D6基因多态性与托莫西汀治疗ADHD疗效的关联性研究进展[J]. 中国现代医生, 2018, 56(20): 165-168. [17]MANKOWSKI D C, LADDISON K J, CHRISTOPHERSON P A, et al. Molecular cloning, expression, and characterization of CYP2D17 from cynomolgus monkey liver[J]. Archives of Biochemistry and Biophysics, 1999, 372(1): 189-196. DOI:10.1006/abbi.1999.1506. [18]UNO Y, UEHARA S, KOHARA S, et al. Cynomolgus monkey CYP2D44 newly identified in liver, metabolizes bufuralol, and dextromethorphan[J]. Drug Metabolism and Disposition, 2010, 38(9): 1486-1492. DOI:10.1124/dmd.110.033274. [19]PERELMAN P, JOHNSON W E, ROOS C, et al. A molecular phylogeny of living primates[J]. PLoS Genetics, 2011, 7(3): e1001342. DOI:10.1371/journal.pgen.1001342. [20]KIMURA S, UMENO M, SKODA R C, et al. The human debrisoquine 4-hydroxylase (CYP2D) locus: Sequence and identification of the polymorphic CYP2D6 gene, a related gene, and a pseudogene[J]. American Journal of Human Genetics, 1989, 45(6): 889-904. [21]TWIST G P, GAEDIGK A, MILLER N A, et al. Constellation: a tool for rapid, automated phenotype assignment of a highly polymorphic pharmacogene, CYP2D6, from whole-genome sequences[J]. NPJ Genomic Medicine, 2017, 2(1): 16039. DOI:10.1038/npjgenmed.2015.7. [22]CHANEY M E, ROMINE M G, PIONTKIVSKA H, et al. Diversifying selection detected in only a minority of xenobiotic-metabolizing CYP1-3 genes among primate species[J]. Xenobiotica, 2020, 50(12): 1406-1412. DOI:10.1080/00498254.2020.1785580. [23]INGELMAN-SUNDBERG M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): Clinical consequences, evolutionary aspects and functional diversity[J]. Pharmacogenomics Journal, 2005, 5(1): 6-13. DOI:10.1038/sj.tpj.6500285. [24]EBISAWA A, HIRATSUKA M, SAKUYAMA K, et al. Two novel single nucleotide polymorphisms (SNPs) of the CYP2D6 gene in Japanese individuals[J]. Drug Metabolism and Pharmacokinetics, 2005, 20(4): 294-299. DOI:10.2133/dmpk.20.294. [25]TOSCANO C, KLEIN K, BLIEVERNICHT J, et al. Impaired expression of CYP2D6 in intermediate metabolizers carrying the*41 allele caused by the intronic SNP 2988G>A: evidence for modulation of splicing events[J]. Pharmacogenetics and Genomics, 2006, 16(10): 755-766. DOI:10.1097/01.fpc.0000230112.96086.e0. [26]SAKUYAMA K, SASAKI T, UJIIE S, et al. Functional characterization of 17 CYP2D6 allelic variants (CYP2D6.2, 10, 14A-B, 18, 27, 36, 39, 47-51, 53-55, and 57)[J]. Drug Metabolism and Disposition, 2008, 36(12): 2460-2467. DOI:10.1124/dmd.108.023242. [27]BRADFORD D L. CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants[J]. Pharmacogenomics, 2002, 3(2): 229-243. DOI:10.1517/14622416.3.2.229. [28]LIAU Y L, MAGGO S, MILLER A L, et al. Nanopore sequencing of the pharmacogene CYP2D6 allows simultaneous haplotyping and detection of duplications[J]. Pharmacogenomics, 2019, 20(14): 1033-1047. DOI:10.2217/pgs-2019-0080. [29]RAIMUNDO S, TOSCANO C, KLEIN K, et al. A novel intronic mutation, 2988G>A, with high predictivity for impaired dunction of cytochrome P450 2D6 in white subjects[J]. Clinical Pharmacology & Therapeutics, 2004, 76(2): 128-138. DOI:10.1016/j.clpt.2004.04.009. [30]金灵. 依据喹硫平个体化药物代谢信息进行临床治疗的研究[D]. 陕西: 西安医学院, 2018. [31]马昕驰,张娜. CYP2D6基因型多态性及其对他莫昔芬治疗的影响研究进展[J]. 肿瘤学杂志, 2020, 26(6): 528-533. [32]BATISTAKI C, CHRONA E, KOSTROGLOU A, et al. CYP2D6 basic genotyping of patients with chronic pain receiving tramadol or codeine: A study in a greek cohort[J]. Pain Medicine, 2020, 21(11): 3199-32042. DOI:10.1093/pm/pnaa122. [33]曾雷, 元静, 卫芋君, 等. CYP2D6基因多态性与分裂症易感性及利培酮治疗反应的研究进展[J]. 国际精神病学杂志, 2018, 45(1): 18-21. [34]黄艳, 刘锦平. CYP2D6基因多态性与他莫昔芬代谢及疗效的相关性研究进展[J]. 实用医院临床杂志, 2015, 12(3): 170-173. [35]ANSTENSRUD K A, MOLDEN E, HAUG H J, et al. Impact of genotype-predicted CYP2D6 metabolism on clinical effects and tolerability of metoprolol in patients after myocardial infarction-a prospective observational study[J]. European Journal of Clinical Pharmacology, 2020, 76(1): 673-683. DOI:10.1007/s00228-020-02832-0. [36]胡焱垚, 王爽, 杨军, 等. CYP2D6、CYP3A5的基因多态性与心血管药物代谢的临床研究进展[J]. 现代养生, 2019(24): 63-64. [37]SENDA C, YAMAURA Y, KOBAYASHI K, et al. Influence of the CYP2D6*10 allele on the metabolism of mexiletine by human liver microsomes[J]. British Journal of Clinical Pharmacology, 2015, 52(1): 100-103. DOI:10.1046/j.0306-5251.2001.01411.x. [38]张泓波, 李宝群, 王瑞婷, 等. 细胞色素氧化酶CYP2D6的研究进展[J]. 承德医学院学报, 2005, 22(1): 72-74. DOI:10.15921/j.cnki.cyxb.2005.01.037. [39]BANK P C D, SWEN J J, GUCHELAAR H J. Estimated nationwide impact of implementing a preemptive pharmacogenetic panel approach to guide drug prescribing in primary care in The Netherlands[J]. BMC Medicine, 2019, 17: 110. DOI:10.1186/s12916-019-1342-5. [40]杨丽蓉, 刘天龙, 刘小雷. CYP2D6*10等位基因多态性对文拉法辛血药浓度的影响[J]. 中南药学, 2013, 11(1): 23-27. [41]杨帆, 仝利俊, 马睿婷. CYP2D6基因多态性对个体用药影响的研究进展[J]. 世界最新医学信息文摘, 2018, 18(92): 32-34. DOI:10.19613/j.cnki.1671-3141.2018.92.014. [42]COLBURN D E, GILES F J, OLADOVICH D, et al. In vitro evaluation of cytochrome P450-mediated drug interactions between cytarabine, idarubicin, itraconazole and caspofungin[J]. Hematology, 2004, 9(3): 217-221. DOI:10.1080/10245330410001701585. [43]ABDULJALIL K, FRANK D, GAEDIGK A, et al. Assessment of activity levels for CYP2D6*1, CYP2D6*2, and CYP2D6*41 genes by population pharmacokinetics of dextromethorphan[J]. Clinical Pharmacology & Therapeutics, 2010, 88(5): 643-651. DOI:10.1038/clpt.2010.137. [44]BOYLE K L, ROSENBAUM C D. Oxycodone overdose in the pediatric population: case files of the University of Massachusetts Medical Toxicology Fellowship[J]. Journal of Medical Toxicology, 2014, 10(3): 280-285. DOI:10.1007/s13181-014-0394-3. [45]COOKE B R, ANNIE B S W, RICHARD C Z, et al. Debrisoquine metabolism and CYP2D expression in marmoset liver microsomes[J]. Drug Metabolism and Disposition, 2012, 40(1):70-75. DOI:10.1124/dmd.111.041566. [46]YASUKOCHI Y, SATTA Y. Molecular evolution of the CYP2D subfamily in primates: purifying selection on substrate recognition sites without the frequent or long-tract gene conversion[J]. Genome Biology and Evolution, 2015, 7(4): 1053-1067. DOI:10.1093/gbe/evv056. [47]GAEDIGK A. Complexities of CYP2D6 gene analysis and interpretation[J]. International Review of Psychiatry, 2013, 25(5): 534-553. DOI:10.3109/09540261.2013.825581. [48]DLUGAUSKAS E, LENGVENYTE A, STRUMILA R, et al. Poor CYP2D6 and ultrarapid CYP2C19 metabolizer: Clinical challenge in psychiatric treatment[J]. European Psychiatry, 2017, 41(S1): S163. DOI:10.1016/j.eurpsy.2017.01.2042. [49]RAVINDRANATH V, KOMMADDI R P, PAI H V. Unique cytochromes P450 in human brain: implication in disease pathogenesis[J]. Journal of Neural Transmission, 2006, 70(Sup): 167-171. DOI:10.1007/978-3-211-45295-0_26. [50]张咏莉, 崔玉强, 汪向升, 等. 黄芪颗粒和黄芪注射液对CYP1A2、CYP2D、CYP2C亚酶活性影响的实验研究[J]. 中国药理学通报, 2013, 29(4): 512-519. |
[1] | LIU Jing, BIAN Xun. Characteristics of the Orthoptera Mitogenome and Its Application [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 17-28. |
[2] | XU Yilan, ZHONG Dandan, DU Xuesong, XIE Yandong, LIU Jingjie, SUN Yue, BIN Shiyu. Correlation Analysis of Polymorphism and Its Cold Tolerance Traits TCP-1-eta Gene of GIFT Tilapia (Oreochromis niloticus) [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 112-117. |
[3] | LÜ Panlong,WENG Xiaoxiong, PENG Xinjian. Public Traffic Passenger Recognition Based on Differential Evolution Algorithm SVM [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 106-114. |
[4] | BIN Shiyu, ZHONG Dandan, DU Xuesong,ZHANG Yongde, LIN Yong, HUANG Yin,WEN Luting. Correlation Analysis of Polymorphism and Its Cold Tolerance Traits HSP70 Gene of GIFT Tilapia (Oreochromis niloticus) [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 211-217. |
[5] | SUN Kang, QUAN Hongjun. Evolutionary Analysis of the Majority Game [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(2): 1-7. |
[6] | QIN Sigang, DUAN Hanming. Study on the Spatial Evolution and Trend of Bank Branches in Xi’an City [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 45-51. |
[7] | LEI Lin, LUO Xiao-yong. A Novel Real-coded Quantum-inspired Evolutionary Algorithm and Its Application [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 23-27. |
[8] | HU Yu-wen, XU Jiu-cheng, SUN Lin. Decision Evolution Sets [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 23-29. |
[9] | LIAO Hai-bo, WAN Zhong-ying, WANG Ming-wen. Projection Pursuit Model of Immune Evolution and Its ApplicationtoText Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 123-128. |
|