广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (6): 233-244.doi: 10.16088/j.issn.1001-6600.2024121501

• 生态环境科学研究 • 上一篇    

菌藻颗粒污泥对含镉废水去除机理探究

王旭1, 陈威1*, 曹亮2, 夏英杰1, 曾鸣1   

  1. 1.武汉科技大学 城市建设学院,湖北 武汉 430081;
    2.生态环境部长江流域生态环境监督管理局生态环境监测与科学研究中心,湖北 武汉 430010
  • 收稿日期:2024-12-15 修回日期:2025-01-26 发布日期:2025-11-19
  • 通讯作者: 陈威(1974—),男,湖南长沙人,武汉科技大学教授,博士。E-mail: chenwei@wust.edu.cn
  • 基金资助:
    长江生态环境保护修复联合研究项目(第二期)(2022LHYJ02050403)

Removal Mechanism of Cadmium Containing Wastewater by Algae-Bacteria Granular Sludge

WANG Xu1, CHEN Wei1*, CAO Liang2, XIA Yingjie1, ZENG Ming1   

  1. 1. School of Urban Construction, Wuhan University of Science and Technology, Wuhan Hubei 430081, China;
    2. Ecological Environment Monitoring and Scientific Research Center, Yangtze Basin Ecological Environment Supervision Administration Bureau, Ministry of Ecology and Environment, Wuhan Hubei 430010, China
  • Received:2024-12-15 Revised:2025-01-26 Published:2025-11-19

摘要: 为探究菌藻颗粒污泥(ABGS)在处理含镉废水方面的应用,采用光序批式反应器(PSBR)处理模拟含镉废水,并观察处理过程中的污染物处理效果、污泥理化特性、表面官能团以及微生物群落结构的变化,从而分析其处理含镉废水过程中的深层次去除机理。实验结果表明,ABGS对含镉废水有良好的去除效果,其中COD、TN以及Cd2+的去除率分别达到88.14%、76.15%和93.40%。准二级动力学模型分析表明,ABGS对Cd2+的去除主要是化学吸附,胞外聚合物(EPS)在重金属吸附中发挥关键作用。通过对ABGS进行FTIR和XPS表征,结果表明,其表面的C—O、C—N和CO等官能团能够与Cd2+发生相互作用,在颗粒表面形成沉淀/络合物,进而实现对Cd2+的化学吸附。在低浓度Cd2+刺激下,ABGS中EPS分泌量从98.96 mg/g增至144.37 mg/g,表现出高抗毒性,但过高浓度Cd2+会抑制其EPS的分泌,破坏颗粒稳定性。微生物群落分析显示,在Cd2+刺激下,norank_ f_Microscillaceaenorank_ f_Saprospiraceae的丰度增加,这些菌是主要的EPS产生菌,会进一步促进EPS分泌,抵御重金属毒性。综上所述,ABGS在处理含Cd2+废水中展现出显著的Cd2+、有机物和氮去除能力和颗粒稳定性。该结果为ABGS处理实际含Cd2+废水的长期稳定运行提供了重要理论基础和实践指导。

关键词: 污水处理, 菌藻颗粒污泥, 含镉废水, 吸附特性, 机理分析

Abstract: To explore the application of algae-bacteria granular sludge in the treatment of cadmium-containing wastewater, a photosequence batch reactor (PSBR) was used to treat simulated cadmium-containing wastewater, and the changes of pollutant treatment effect, sludge physicochemical properties, surface functional groups and microbial community structure were observed. The deep removal mechanism in the process of treating cadmium-containing wastewater was analyzed. The experimental results showed that the algae-bacteria granular sludge had a good removal effect on cadmium-containing wastewater, in which the removal rates of COD, TN and Cd2+ reach 88.14%, 76.15% and 93.40%, respectively. The pseudo-second-order kinetic model indicated that the removal of Cd2+ was primarily through chemical adsorption, with EPS playing a crucial role. FTIR and XPS characterization revealed that functional groups such as C—O, C—N, and CO on the sludge surface interact with Cd2+, forming precipitates or complexes, which facilitated chemical adsorption. Under low Cd2+ concentrations, EPS secretion increased from 98.96 mg/g to 144.37 mg/g, demonstrating high resistance to toxicity. However, high Cd2+ concentrations inhibited EPS secretion, compromising particle stability. Microbial community analysis showed that under Cd2+ stress, the abundance of norank_f_Microscillaceae and norank_f_Saprospiraceae increased. These bacteria were major EPS producers, further enhancing EPS secretion and resisting heavy metal toxicity. In summary, algae-bacteria granular sludge exhibits significant removal capabilities for Cd2+, organic matter, and nitrogen and phosphorus, while maintaining particle stability. These findings provide a theoretical foundation and practical guidance for the long-term stable operation of sludge in treating Cd2+-contaminated wastewater.

Key words: wastewater treatment, algae-bacteria granular sludge, cadmium-containing wastewater, adsorption characteristics, mechanism analysis

中图分类号:  X703

[1] 郝吉明, 田金平, 卢琬莹,等. 长江经济带工业园区绿色发展战略研究[J]. 中国工程科学, 2022, 24(1): 155-165. DOI: 10.15302/J-SSCAE-2022.01.017.
[2] 何佳, 时迪, 王贝贝,等. 10种典型重金属在八大流域的生态风险及水质标准评价[J]. 中国环境科学, 2019, 39(7): 2970-2982. DOI: 10.19674/j.cnki.issn1000-6923.2019.0351.
[3] DHOKPANDE S R, DESHMUKH S M, KHANDEKAR A, et al. A review outlook on methods for removal of heavy metal ions from wastewater[J]. Separation and Purification Technology, 2024, 350: 127868.DOI: 10.1016/j.seppur.2024.127868.
[4] YUAN M, CAO H R, SHANG S S, et al. One-step green synthesis of melamine-modified cellulose nanofiber composite aerogels for efficient removal of Pb(Ⅱ) and Cu(Ⅱ): experiments and DFT calculations[J]. International Journal of Biological Macromolecules, 2024, 281: 136305. DOI: 10.1016/j.ijbiomac.2024.136305.
[5] 康得军, 谢丹瑜, 匡帅,等. 活性污泥胞外聚合物对Pb2+和Cu2+的吸附机理[J]. 中国给水排水, 2016, 32(21): 28-33. DOI: 10.19853/j.zgjsps.1000-4602.2016.21.006.
[6] DAI M X, ZHOU G Q, NG H Y, et al. Diversity evolution of functional bacteria and resistance genes (CzcA) in aerobic activated sludge under Cd(Ⅱ) stress[J]. Journal of Environmental Management, 2019, 250: 109519. DOI: 10.1016/j.jenvman.2019.109519.
[7] REN L X, WANG P F, WANG C, et al. Algal growth and utilization of phosphorus studied by combined mono-culture and co-culture experiments[J]. Environmental Pollution, 2017, 220: 274-285. DOI: 10.1016/j.envpol.2016.09.061.
[8] 陈庆峰, 余哲, 黄诗琪,等. 菌藻共生好氧颗粒污泥的分形特征研究[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 163-172. DOI: 10.16088/j.issn.1001-6600.2021082104.
[9] WANG Z W, WANG H X, NIE Q, et al. Pb(Ⅱ) bioremediation using fresh algal-bacterial aerobic granular sludge and its underlying mechanisms highlighting the role of extracellular polymeric substances[J]. Journal of Hazardous Materials, 2023, 444: 130452. DOI: 10.1016/j.jhazmat.2022.130452.
[10] YANG X J, ZHAO Z W, VAN NGUYEN B, et al. Cr(Ⅵ) bioremediation by active algal-bacterial aerobic granular sludge: importance of microbial viability, contribution of microalgae and fractionation of loaded Cr[J]. Journal of Hazardous Materials, 2021, 418: 126342. DOI: 10.1016/j.jhazmat.2021.126342.
[11] YANG X J, ZHAO Z W, ZHANG G H, et al. Insight into Cr(Ⅵ) biosorption onto algal-bacterial granular sludge: Cr(Ⅵ) bioreduction and its intracellular accumulation in addition to the effects of environmental factors[J]. Journal of Hazardous Materials, 2021, 414: 125479. DOI: 10.1016/j.jhazmat.2021.125479.
[12] LI Y Y, DECONINCK T, BARATI B, et al. The effect of cadmium on a semi-self-sustaining microalgal-bacterial granular sludge process for wastewater treatment[J]. Journal of Water Process Engineering, 2024, 60: 105196. DOI: 10.1016/j.jwpe.2024.105196.
[13] ZHANG C, LAIPAN M W, ZHANG L, et al. Capturing effects of filamentous fungi Aspergillus flavus ZJ-1 on microalgae Chlorella vulgaris WZ-1 and the application of their co-integrated fungi-algae pellets for Cu(Ⅱ) adsorption[J]. Journal of Hazardous Materials, 2023, 442: 130105. DOI: 10.1016/j.jhazmat.2022.130105.
[14] 闻倩敏. UASB硫酸盐还原体系处理含镉锌矿山废水的调控及成矿机理研究[D]. 桂林: 桂林电子科技大学, 2022.
[15] WANG S L, JI B, CUI B H, et al. Cadmium-effect on performance and symbiotic relationship of microalgal-bacterial granules[J]. Journal of Cleaner Production, 2021, 282: 125383. DOI: 10.1016/j.jclepro.2020.125383.
[16] ZENG T T, WANG L Q, REN X Y, et al. The effect of quorum sensing on cadmium- and lead-containing wastewater treatment using activated sludge: Removal efficiency, enzyme activity, and microbial community[J]. Environmental Research, 2024, 252: 118835. DOI: 10.1016/j.envres.2024.118835.
[17] 付佳慧, 王威, 邓华,等. 赤泥-聚丙烯酸-羧甲基纤维素水凝胶对水中Pb2+吸附研究[J]. 广西师范大学学报(自然科学版), 2024, 52(5): 150-162. DOI: 10.16088/j.issn.1001-6600.2024030702.
[18] 王威, 邓华, 胡乐宁,等. 赤泥-海藻酸钠水凝胶对水中Pb(Ⅱ)的吸附性能[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 105-115. DOI: 10.16088/j.issn.1001-6600.2022110901.
[19] 郑国权, 秦永丽, 汪晨祥,等. ABR硫酸盐还原体系分级沉淀酸性矿山废水中重金属及矿物形成[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 40-52. DOI: 10.16088/j.issn.1001-6600.2024040303.
[20] YAASHIKAA P R, PALANIVELU J, HEMAVATHY R V. Sustainable approaches for removing toxic heavy metal from contaminated water: a comprehensive review of bioremediation and biosorption techniques[J]. Chemosphere, 2024, 357: 141933. DOI: 10.1016/j.chemosphere.2024.141933.
[21] LI G F, MA W J, CHENG Y F, et al. A spectra metrology insight into the binding characteristics of Cu2+ onto anammox extracellular polymeric substances[J]. Chemical Engineering Journal, 2020, 393: 124800. DOI: 10.1016/j.cej.2020.124800.
[22] YE B H, LUO Y T, HE J Y, et al. Investigation of lead bioimmobilization and transformation by Penicillium oxalicum SL2[J]. Bioresource Technology, 2018, 264: 206-210. DOI: 10.1016/j.biortech.2018.05.066.
[23] KAVITA K, SINGH V K, MISHRA A, et al. Characterisation and anti-biofilm activity of extracellular polymeric substances from Oceanobacillus iheyensis[J]. Carbohydrate Polymers, 2014, 101: 29-35. DOI: 10.1016/j.carbpol.2013.08.099.
[24] HE Y H, JIANG Z C, ZENG M, et al. Deciphering retention effect of extracellular polymeric substances to typical heavy metals and their interaction with key inner enzymes of Candidatus Kuenenia[J]. Journal of Hazardous Materials, 2024, 477: 135367. DOI: 10.1016/j.jhazmat.2024.135367.
[25] GU S W, LAN C Q. Biosorption of heavy metal ions by green Alga neochloris oleoabundans: effects of metal ion properties and cell wall structure[J]. Journal of Hazardous Materials, 2021, 418: 126336. DOI: 10.1016/j.jhazmat.2021.126336.
[26] ZHANG F, XU W Q, ZHANG L W, et al. Riboflavin as a non-quinone redox mediator for enhanced Cr(VI) removal by Shewanella putrefaciens[J]. Journal of Molecular Liquids, 2022, 351: 118622. DOI: 10.1016/j.molliq.2022.118622.
[27] 吴磊, 张学洪, 李宁杰,等. 胞外聚合物在白腐真菌去除镉过程中的作用[J]. 桂林理工大学学报, 2020, 40(1): 177-181. DOI: 10.3969/j.issn.1674-9057.2020.01.023.
[28] 覃容华, 宿程远, 陆欣雅,等. Cr(Ⅵ)浓度对MFC-颗粒污泥耦合体系运行效能及微生态的影响[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 242-254. DOI: 10.16088/j.issn.1001-6600.2022040403.
[29] 李盈盈, 周璐, 荣宏伟,等. 光照强度对菌藻共生系统处理海产养殖废水的性能影响及微生物群落变化[J]. 净水技术, 2023, 42(8): 117-130. DOI: 10.15890/j.cnki.jsjs.2023.08.015.
[30] LI Q, CHANG J J, LI L F, et al. Soil amendments alter cadmium distribution and bacterial community structure in paddy soils[J]. Science of The Total Environment, 2024, 924: 171399. DOI: 10.1016/j.scitotenv.2024.171399.
[31] YANG F, WANG S, LI H X, et al. Differences in responses of activated sludge to nutrients-poor wastewater: function, stability, and microbial community[J]. Chemical Engineering Journal, 2023, 457: 141247. DOI: 10.1016/j.cej.2022.141247.
[32] NG W L, CHUA A S M, LOW J H, et al. Mixed culture resource recovery from industrial waste glycerin pitch: microbial analysis and production of bio-flocculants extracellular polymeric substances[J]. Chemical Engineering Journal, 2024, 482: 149074. DOI: 10.1016/j.cej.2024.149074.
[33] LIANG D B, GUO W, LI D Y, et al. Enhanced aerobic granulation for treating low-strength wastewater in an anaerobic-aerobic-anoxic sequencing batch reactor by selecting slow-growing organisms and adding carriers[J]. Environmental Research, 2022, 205: 112547. DOI: 10.1016/j.envres.2021.112547.
[34] MISHRA V K, SHUKLA R, SHUKLA P N. Metal uptake potential of four methylotrophic bacterial strains from coal mine spoil, exploring a new possible agent for bioremediation[J]. Environmental Technology & Innovation, 2018, 11: 174-186. DOI: 10.1016/j.eti.2018.05.001.
[35] JIA L X, WU W L, ZHOU Q, et al. New insights on the synergetic removal of nutrients and sulfonamides in solid carbon/manganese ore supported denitrification system: water quality, microbial community and antibiotic resistance genes[J]. Chemical Engineering Journal, 2022, 446: 136992. DOI: 10.1016/j.cej.2022.136992.
[36] ZHU X Z, LEE L W, SONG G Q, et al. Deciphering mono/multivalent draw solute-induced microbial ecology and membrane fouling in anaerobic osmotic membrane bioreactor[J]. Water Research, 2022, 209: 117869. DOI: 10.1016/j.watres.2021.117869.
[1] 王淑颖, 卢宇翔, 董淑彤, 陈默, 康秉娅, 蒋长兰, 宿程远. 污水中抗生素抗性基因传播过程及控制技术研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 1-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘晓娟, 林璐, 胡郁葱, 潘雷. 站点周边用地类型对地铁乘车满意度影响研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 1 -12 .
[2] 韩华彬, 高丙朋, 蔡鑫, 孙凯. 基于HO-CNN-BiLSTM-Transformer模型的风机叶片结冰故障诊断[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 13 -28 .
[3] 陈建国, 梁恩华, 宋学伟, 覃章荣. 基于OCT图像三维重建的人眼房水动力学LBM模拟[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 29 -41 .
[4] 李好, 何冰. 凹槽结构表面液滴弹跳行为研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 42 -53 .
[5] 凌福, 张永刚, 闻炳海. 基于插值的多相流格子Boltzmann方法曲线边界算法研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 54 -68 .
[6] 解盛, 马海菲, 张灿龙, 王智文, 韦春荣. 基于多分辨率特征定位的跨模态行人检索方法[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 69 -79 .
[7] 魏梓书, 陈志刚, 王衍学, 哈斯铁尔·马德提汗. 基于SBSI-YOLO11的轻量化轴承外观缺陷检测算法[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 80 -91 .
[8] 易见兵, 胡雅怡, 曹锋, 李俊, 彭鑫, 陈鑫. 融合动态通道剪枝的轻量级CT图像肺结节检测网络设计[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 92 -106 .
[9] 卢梦筱, 张阳春, 章晓峰. 基于分布式强化学习方法解决后继特征中的低估问题[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 107 -119 .
[10] 姜云卢, 卢辉杰, 黄晓雯. 惩罚加权复合分位数回归方法在固定效应面板数据中的应用研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 120 -127 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发