广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (6): 223-232.doi: 10.16088/j.issn.1001-6600.2024122301

• 生态环境科学研究 • 上一篇    下一篇

铜基类芬顿-三氯异氰脲酸处理垃圾渗滤液

刘丹1, 姚兵2, 陆冬云2, 吴烈善1*, 罗晶晶1, 陈艺中1   

  1. 1.广西大学 资源环境与材料学院,广西 南宁 530004;
    2.广西春晖环保工程有限责任公司,广西 柳州 545001
  • 收稿日期:2024-12-23 修回日期:2025-04-14 发布日期:2025-11-19
  • 通讯作者: 吴烈善(1966—),男(侗族),广西桂林人,广西大学教授,博士。E-mail: wuls312@163.com
  • 基金资助:
    广西重点研发计划(桂科AB23075165)

Process Study of Copper-based Fenton-TCCA Combination for Deep Treatment of Waste Leachate

LIU Dan1, YAO Bing2, LU Dongyun2, WU Lieshan1*, LUO Jingjing1, CHEN Yizhong1   

  1. 1. School of Resources, Environment and Materials, Guangxi University, Nanning Guangxi 530004, China;
    2. Guangxi Chunhui Environmental Protection Engineering Co., Ltd, Liuzhou Guangxi 545001, China
  • Received:2024-12-23 Revised:2025-04-14 Published:2025-11-19

摘要: 垃圾渗滤液含有大量难降解有机物,其可生化性随填埋年限增加而显著降低,传统处理方法难以满足排放要求。本文创新性地提出铜基类芬顿-TCCA(三氯异氰脲酸)协同氧化体系,并与常规两级芬顿工艺进行对比,同时优化了工艺条件。结果表明,铜基类芬顿-三氯异氰脲酸联合工艺对垃圾渗滤液CODCr的去除率最高。铜基类芬顿最佳反应条件是pH值5.0、CuSO4·5H2O投加量1.2 g/L、双氧水投加量15 mL/L,三氯异氰脲酸最佳反应条件是pH值7.0、三氯异氰脲酸投加量7 g/L时,CODCr的去除率为97.86%,体系中剩余CODCr含量为55.11 mg/L,符合国家排放标准要求。

关键词: 垃圾渗滤液, 芬顿氧化, 铜基类芬顿, 三氯异氰脲酸, CODCr

Abstract: Waste leachate is a complex and degradable material that decreases with the increase of landfill time, and most of the non-degradable materials will cause great pollution to soil and groundwater. In this paper, the removal effects of two-stage Fenton oxidation, copper-based Fenton oxidation and copper-based Fenton-trichloroisocyanuric acid (TCCA) combined process on the organic matter in the waste leachate were investigated and the process conditions were optimized. The results showed that the combined copper-based Fenton-trichloroisocyanuric acid process had the highest removal rate of CODCr from the waste leachate. The optimal reaction conditions for copper-based Fenton were pH 5.0, CuSO4·5H2O dosage of 1.2 g/L, H2O2 dosage of 15 mL/L, and the optimal reaction conditions for trichloroisocyanuric acid were pH 5.0, trichloroisocyanuric acid dosage of 7 g/L. The removal rate of CODCr was 97.86%, and the residual CODCr content in the system was 55.11 mg/L, which was in accordance with the requirements of national emission standards.

Key words: waste leachate, fenton combination process, copper-based fenton, trichloroisocyanuric acid, CODCr

中图分类号:  X703

[1] 牧兰. 浅析垃圾渗滤液处理现状及在的问题[J].资源节约与环保, 2022(12): 115-118. DOI: 10.16317/j.cnki.121377/x.2022.12.028.
[2] LUO H W, ZENG Y F, CHENG Y, et al. Recent advances in municipal landfill leachate: a review focusing on its characteristics, treatment, and toxicity assessment[J]. Science of The Total Environment, 2020, 703: 135468. DOI: 10.1016/j.scitotenv.2019.135468.
[3] WIJEKOON P, KOLIYABANDARA P A, COORAY A T, et al. Progress and prospects in mitigation of landfill leachate pollution: risk, pollution potential, treatment and challenges[J]. Journal of Hazardous Materials, 2022, 421: 126627. DOI: 10.1016/j.jhazmat.2021.126627.
[4] 冷超群, 李红, 王雪霞, 等. 生活垃圾填埋场膜浓缩液全量化处理工艺研究及工程实践[J]. 给水排水, 2022, 58(S1): 156-160, DOI: 10.13789/j.cnki.wwe1964.2021.04.15.0004.
[5] 张亚通, 朱鹏毅, 朱建华, 等. 垃圾渗滤液膜截留浓缩液处理工艺研究进展[J].工业水处理, 2019(9): 18-23. DOI: 10.27107/d.cnki.ghbku.2019.000569.
[6] 张其其. 垃圾渗滤液膜滤浓缩液Fenton预处理-回灌技术研究[D]. 杭州: 浙江大学, 2014.
[7] ZHANG P, YANG M J, LAN J J, et al. Water quality degradation due to heavy metal contamination: health impacts and ecofriendly approaches for heavy metal remediation[J]. Toxics, 2023, 11(10): 828. DOI: 10.3390/toxics11100828.
[8] 张晨, 宫兆国, 付友先, 等. 高级氧化工艺处理垃圾浓缩液的研究进展[J]. 山东化工, 2022, 51(5): 95-97. DOI: 10.19319/j.cnki.issn.1008021x.2022.05.020.
[9] KUMAR V, SHARMA N, UMESH M, et al. Micropollutants characteristics, fate, and sustainable removal technologies for landfill leachate: a technical perspective[J]. Journal of Water Process Engineering, 2023, 53: 103649. DOI: 10.1016/j.jwpe.2023.103649.
[10] WU C W, CHEN W M, GU Z P, et al. A review of the characteristics of Fenton and ozonation systems in landfill leachate treatment[J]. Science of the Total Environment, 2021, 762: 143131. DOI: 10.1016/j.scitotenv.2020.143131.
[11] 敖韩, 何辉超, 田浩, 等. 高级氧化技术处理难降解有机废水研究进展[J]. 云南化工, 2022, 49(12): 9-12.
[12] PARTHENIDIS P, EVGENIDOU E, LAMBROPOULOU D. Landfill leachate treatment by hydroxyl and sulfate radicalbased advanced oxidation processes (AOPs)[J]. Journal of Water Process Engineering, 2023, 53: 103768. DOI: 10.1016/j.jwpe.2023.103768.
[13] 滕春英. 铜基类芬顿联合活性污泥法处理垃圾渗滤液膜浓缩液研究[D]. 长沙: 中南大学, 2022.
[14] 李克伦, 张生军, 田士东, 等. 高级氧化及其催化剂技术在废水处理中的进展[J]. 陕西煤炭, 2020, 39(S1): 154-158.
[15] 苏静, 王灿, 王志刚, 等. 工业废水处理中类芬顿工艺进展研究[J]. 化肥设计, 2022, 60(5): 13-17,37.
[16] 董翔宇, 黄雨竹, 王长智, 等. 印染废水膜浓缩液有机物的铁碳微电解-类芬顿去除性能研究[J]. 环境科学学报, 2025, 45(4): 1-12. DOI: 10.13671/j.hjkxxb.2024.0441.
[17] 姜涵. 铜基双金属氧化物的制备及其催化双氧水降解有机物的研究[D]. 青岛: 青岛科技大学, 2022. DOI: 10.27264/d.cnki.gqdhc.2022.000147.
[18] 陈婷.铜基类芬顿催化剂的制备及其降解水中典型有机污染物的机制研究[D]. 上海: 同济大学, 2022. DOI: 10.27372/d.cnki.gtjsu.2022.000141.
[19] SEIBERT D, QUESADA H, BERGAMASCO R, et al. Presence of endocrine disrupting chemicals in sanitary landfill leachate, its treatment and degradation by Fenton based processes: a review[J]. Process Safety and Environmental Protection, 2019, 131: 255-267. DOI: 10.1016/j.psep.2019.09.022.
[20] LEE H, LEE H J, SEDLAK D L, et al. pH dependent reactivity of oxidants formed by iron and coppercatalyzed decomposition of hydrogen peroxide[J]. Chemosphere, 2013, 92(6): 652-658. DOI: 10.1016/j.chemosphere.2013.01.073.
[21] YOON J, CHO S, CHO Y, et al. The characteristics of coagulation of Fenton reaction in the removal of landfill leachate organics[J]. Water Science and Technology, 1998, 38(2): 209-214. DOI: 10.1016/S02731223(98)004818.
[22] 杨露. 含双功能区的铜基催化剂应用于类芬顿降解水体中土霉素的行为机理研究[D]. 长沙: 湖南大学, 2023. DOI: 10.27135/d.cnki.ghudu.2023.000654.
[23] 周忠云, 周小琴, 禹晓梅, 等. 含氯消毒片中三氯异氰尿酸含量的液相色谱分析[J]. 辽宁化工, 2014, 43(12): 1589-1591.
[24] 邓科, 张定明. 中国氯碱产业发展现状及未来竞争特点分析[J]. 氯碱工业, 2013, 49(11):1-15.
[25] 闫雪莹, 吴德生, 刘素纯, 等. 三氯异氰尿酸应用研究现状及进展[J]. 中国消毒学杂志, 2018, 35(3): 221-223.
[26] 苏念英, 黎铉海, 陈明月, 等. 三氯异氰脲酸在深度处理中低浓度垃圾渗滤液中的应用[J]. 工业安全与环保, 2019, 45(6): 86-89.
[27] 张焱, 韩仲亮, 董燕平, 等. 三氯异氰尿酸用于城市污水消毒效果及影响因素分析[J]. 河南化工, 2023, 40(3): 28-31. DOI: 10.14173/j.cnki.hnhg.2023.03.021.
[28] NIE X P, WANG X, CHEN J F, et al. Response of the freshwater Alga chlorella vulgaris to trichloroisocyanuric acid and ciprofloxacin[J]. Environmental Toxicology and Chemistry, 2008, 27(1): 168-173. DOI: 10.1897/07028.1.
[29] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitationemission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. DOI: 10.1021/es034354c.
[30] 周倩倩. 铜基类芬顿催化剂的合成及其高效降解水中四环素的研究[D]. 合肥: 中国科学技术大学, 2023. DOI: 10.27517/d.cnki.gzkju.2023.001274.
[31] CHAI Z Z, WANG J Q, DAI Y X, et al. Synergy between UV light and trichloroisocyanuric acid on methylisothiazolinone degradation: Performance, kinetics and degradation pathway[J]. Environmental Research, 2023, 236: 116693. DOI: 10.1016/j.envres.2023.116693.
[32] 岳楠, 周康根, 董舒宇, 等. 次氯酸钠氧化去除废水中氨氮的研究[J]. 应用化工, 2015, 44(4): 602-610. DOI: 10.16581/j.cnki.issn16713206.2015.04.053.
[33] 毋浪鹏, 许海亮, 郑元武, 等. 次氯酸钠氧化法处理含镍电镀废水的应用研究[J]. 电镀与涂饰, 2024, 43(1): 144-149. DOI: 10.19289/j.1004227x.2024.01.019.
[34] 李玉明, 杨丹, 金述宝, 等. 间歇式电解氧化法预处理垃圾渗滤液[J]. 辽宁化工, 2024, 53(11): 1699-1701, 1711. DOI: 10.14029/j.cnki.issn10040935.2024.11.029.
[35] 李雅荣,唐文福,何昌伟,等.芬顿协同臭氧深度处理垃圾渗滤液生化出水[J]. 辽宁化工, 2024, 53(10): 1505-1508. DOI: 10.14029/j.cnki.issn10040935.2024.10.031.
[36] 方檬, 傅敏, 李易, 等. 微纳米气泡/UV/H2O2协同处理垃圾渗滤液中典型污染物[J]. 化学工程, 2024, 52(7): 7-13. DOI: 10.3969/j.issn.10059954.2024.07.002.
[37] 陈用. 两级芬顿对膜滤浓缩液与垃圾渗滤液协同处理的工艺研究[J]. 广州化工, 2023, 51(7): 145-148.
[38] CAI J Z, NIU B L, ZHAO H Y, et al. Selective photoelectrocatalytic removal for grouptargets of phthalic esters[J]. Environmental Science & Technology, 2021, 55(4): 2618-2627. DOI: 10.1021/acs.est.0c07106.
[39] 陈明月. 离子交换纤维法与TCCA氧化法深度处理垃圾渗滤液的工艺研究[D]. 南宁: 广西大学, 2018.
[1] 陈渊. 方形花状Bi2WO6可见光催化降解制革废水[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 60-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘晓娟, 林璐, 胡郁葱, 潘雷. 站点周边用地类型对地铁乘车满意度影响研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 1 -12 .
[2] 韩华彬, 高丙朋, 蔡鑫, 孙凯. 基于HO-CNN-BiLSTM-Transformer模型的风机叶片结冰故障诊断[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 13 -28 .
[3] 陈建国, 梁恩华, 宋学伟, 覃章荣. 基于OCT图像三维重建的人眼房水动力学LBM模拟[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 29 -41 .
[4] 李好, 何冰. 凹槽结构表面液滴弹跳行为研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 42 -53 .
[5] 凌福, 张永刚, 闻炳海. 基于插值的多相流格子Boltzmann方法曲线边界算法研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 54 -68 .
[6] 解盛, 马海菲, 张灿龙, 王智文, 韦春荣. 基于多分辨率特征定位的跨模态行人检索方法[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 69 -79 .
[7] 魏梓书, 陈志刚, 王衍学, 哈斯铁尔·马德提汗. 基于SBSI-YOLO11的轻量化轴承外观缺陷检测算法[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 80 -91 .
[8] 易见兵, 胡雅怡, 曹锋, 李俊, 彭鑫, 陈鑫. 融合动态通道剪枝的轻量级CT图像肺结节检测网络设计[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 92 -106 .
[9] 卢梦筱, 张阳春, 章晓峰. 基于分布式强化学习方法解决后继特征中的低估问题[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 107 -119 .
[10] 姜云卢, 卢辉杰, 黄晓雯. 惩罚加权复合分位数回归方法在固定效应面板数据中的应用研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 120 -127 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发