|
|
广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (4): 120-128.doi: 10.16088/j.issn.1001-6600.2024062102
徐健淞, 孙峪怀*
XU Jiansong, SUN Yuhuai*
摘要: 本文研究时空分数阶Sasa-Satsuma方程行波解的分岔及其动力学行为。首先对时空分数阶Sasa-Satsuma方程进行分数阶复变换,将其转化为等价的常微分系统,推导出对应的平面动力系统;然后对平面动力系统参数不同取值进行讨论,获得对应相图;再根据系统分岔情况,求解时空分数阶Sasa-Satsuma方程不同轨线各类行波解的精确表达式;最后给出部分解的三维图。
中图分类号: O175.29
| [1] IQBAL I, REHMAN H U, ASHRAF H, et al. Soliton unveilings in optical fiber transmission: Examining soliton structures through the Sasa-Satsuma equation[J]. Results in Physics, 2024, 60: 107648. DOI: 10.1016/j.rinp.2024.107648. [2] GHOSH P K. Conformal symmetry and the nonlinear Schrödinger equation[J]. Physical Review A, 2001, 65(1): 012103. DOI: 10.1103/PhysRevA.65.012103. [3] CHABCHOUB A, KIBLER B, FINOT C, et al. The nonlinear Schrödinger equation and the propagation of weakly nonlinear waves in optical fibers and on the water surface[J]. Annals of Physics, 2015, 361: 490-500. DOI: 10.1016/j.aop.2015.07.003. [4] WANG K J, ZHANG P L. Investigation of the periodic solution of the time-space fractional Sasa-Satsuma equation arising in the monomode optical fibers[J]. Europhysics Letters, 2022, 137(6): 62001. DOI: 10.1209/0295-5075/ac2a62. [5] MIHALACHE D, TORNER L, MOLDOVEANU F, et al. Inverse-scattering approach to femtosecond solitons in monomode optical fibers[J]. Physical Review E, 1993,48(6): 4699-4709. DOI: 10.1103/physreve.48.4699. [6] KODAMA Y. Optical solitons in a monomode fiber[J]. Journal of Statistical Physics, 1985, 39(5): 597-614. DOI: 10.1007/BF01008354. [7] AKRAM G, SADAF M, ARSHED S, et al. Optical soliton solutions of fractional Sasa-Satsuma equation with beta and conformable derivatives[J]. Optical and Quantum Electronics, 2022, 54(11): 741. DOI: 10.1007/s11082-022-04153-1. [8] LI C C, CHEN L W, LI G H. Optical solitons of space-time fractional Sasa-Satsuma equation by F-expansion method[J]. Optik, 2020, 224: 165527. DOI: 10.1016/j.ijleo.2020.165527. [9] YÉPEZ-MARTÍNEZ H, REZAZADEH H, INC M, et al. Optical solitons of the fractional nonlinear Sasa-Satsuma equation with third-order dispersion and with Kerr nonlinearity law in modulation instability[J]. Optical and Quantum Electronics, 2022, 54(12): 804. DOI: 10.1007/s11082-022-04207-4. [10] RAHEEL M, ZAFAR A, INC M, et al. Optical solitons to time-fractional Sasa-Satsuma higher-order non-linear Schrödinger equation via three analytical techniques[J]. Optical and Quantum Electronics, 2023, 55(4): 307. DOI: 10.1007/s11082-023-04565-7. [11] WANG K J, LIU J H. Periodic solution of the time-space fractional Sasa-Satsuma equation in the monomode optical fibers by the energy balance theory[J]. Europhysics Letters, 2022, 138(2): 25002. DOI: 10.1209/0295-5075/ac5c78. [12] MURAD M A S, ISMAEL H F, SULAIMAN T A, et al. Higher-order time-fractional Sasa-Satsuma equation: various optical soliton solutions in optical fiber[J]. Results in Physics, 2023, 55: 107162. DOI: 10.1016/j.rinp.2023.107162. [13] 何进春,陈宗蕴,黄念宁.求解DNLS方程的反散射法的基本问题[J].物理学报,2009,58(9):6063-6067. DOI: 10.3321/j.issn:1000-3290.2009.09.028. [14] 周建军,洪宝剑,卢殿臣.耦合Schrödinger-Boussinesq方程组的显式精确解[J].广西师范大学学报(自然科学版),2013,31(1):11-15. DOI: 10.16088/j.issn.1001-6600.2013.01.016. [15] FAROOQ A, KHAN M I, NISAR K S, et al. A detailed analysis of the improved modified Korteweg-de Vries equation via the Jacobi elliptic function expansion method and the application of truncated M-fractional derivatives[J]. Results in Physics, 2024, 59: 107604. DOI: 10.1016/j.rinp.2024.107604. [16] 曹娜,徐丽阳,尹晓军.变系数F展开法求解非线性Schrödinger方程的精确解[J].应用数学,2023,36(1):161-169. DOI: 10.13642/j.cnki.42-1184/o1.2023.01.009. [17] BORG M, BADRA N M, AHMED H M, et al. Solitons behavior of Sasa-Satsuma equation in birefringent fibers with Kerr law nonlinearity using extended F-expansion method[J]. Ain Shams Engineering Journal, 2024, 15(1): 102290. DOI: 10.1016/j.asej.2023.102290. [18] 王丽真,沈翔.利用首次积分法求解一致时空分数阶微分方程[J].西北大学学报(自然科学版),2022,52(2):279-287. DOI: 10.16152/j.cnki.xdxbzr.2022-02-014. [19] LIU H Z. A modification to the first integral method and its applications[J]. Applied Mathematics and Computation, 2022,419: 126855. DOI: 10.1016/j.amc.2021.126855. [20] KHATER M M A, LU D C, ATTIA R A M. Dispersive long wave of nonlinear fractional Wu-Zhang system via a modified auxiliary equation method[J]. AIP Advances, 2019, 9(2): 025003. DOI: 10.1063/1.5087647. [21] REHMAN H U, HASSAN M U, SALEEM M S, et al. Soliton solutions of Zakhrov equation in ionized plasma using new extended direct algebraic method[J]. Results in Physics, 2023,46: 106325. DOI: 10.1016/j.rinp.2023.106325. [22] 胡艳,孙峪怀.应用多项式完全判别系统方法求解时空分数阶复Ginzburg-Landau方程[J].应用数学和力学,2021,42(8):874-880. DOI: 10.21656/1000-0887.410392. [23] LI Z, FAN W J, MIAO F. Chaotic pattern, phase portrait, sensitivity and optical soliton solutions of coupled conformable fractional Fokas-Lenells equation with spatio-temporal dispersion in birefringent fibers[J]. Results in Physics, 2023,47: 106386. DOI: 10.1016/j.rinp.2023.106386. [24] TANG L. Bifurcation analysis and optical soliton solutions for the fractional complex Ginzburg-Landau equation in communication systems[J]. Optik, 2023, 276: 170639. DOI: 10.1016/j.ijleo.2023.170639. [25] AYDIN M E. Effect of local fractional derivatives on Riemann curvature tensor[J]. Examples and Counterexamples, 2024, 5: 100134. DOI: 10.1016/j.exco.2023.100134. [26] ZHANG Y N, PANG J. He’s homotopy perturbation method and fractional complex transform for analysis time fractional Fornberg-Whitham equation[J]. Sound and Vibration, 2021, 55(4): 295-303. DOI: 10.32604/sv.2021.014445. [27] ABDELHAQ L, SYAM S M, SYAM M I. An efficient numerical method for two-dimensional fractional integro-differential equations with modified Atangana-Baleanu fractional derivative using operational matrix approach[J]. Partial Differential Equations in Applied Mathematics, 2024, 11: 100824. DOI: 10.1016/j.padiff.2024.100824. [28] ORTIGUEIRA M D, RODRÍGUEZ-GERMÁ L, TRUJILLO J J. Complex Complex Grünwald-Letnikov, Liouville, Riemann-Liouville, and Caputo derivatives for analytic functions[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(11): 4174-4182. DOI: 10.1016/j.cnsns.2011.02.022. [29] 吴强,黄建华.分数阶微积分[M].北京:清华大学出版社,2016:185. [30] KHALIL R, AL HORANI M, YOUSEF A, et al. A new definition of fractional derivative[J]. Journal of Computational and Applied Mathematics, 2014, 264: 65-70. DOI: 10.1016/j.cam.2014.01.002. [31] YAN F, LIU H H, LIU Z R. The bifurcation and exact travelling wave solutions for the modified Benjamin-Bona-Mahoney (mBBM) equation[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(7): 2824-2832. DOI: 10.1016/j.cnsns.2011.11.014. [32] 张卫国,杨萌.耦合DSW方程的周期波解与孤波解[J].应用数学学报,2020,43(5):792-820. |
| [1] | 张晓倩, 王磊. 二维分段仿射系统奇异环分岔诱导的极限环[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 98-105. |
| [2] | 陈嘉睿, 凌琳, 蒋贵荣. 脉冲推力作用下上楼梯双足机器人行走的建模与动力学分析[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 131-144. |
| [3] | 邵慧婷, 杨启贵. 具有4个正Lyapunov指数的六维超混沌系统的复杂动力学研究[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 433-444. |
| [4] | 徐王军, 曹进德, 伍代勇, 申传胜. 一类具有迁移和Allee效应的食饵-捕食者系统稳定性[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 103-115. |
| [5] | 阮文静, 杨启贵. 具有有限和无限孤立奇点的新四维超混沌系统的复杂动力学分析[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 173-181. |
| [6] | 李松涛, 李群宏, 张文. 三自由度碰撞振动系统的余维二擦边分岔与混沌控制[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 79-92. |
| [7] | 黄春贤, 周效良. 含等级治疗率与不完全康复率的SIRS模型的分岔分析[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 74-81. |
| [8] | 洪玲玲,杨启贵. 新四维超混沌系统的复杂动力学研究[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 96-105. |
| [9] | 张一进. Xρ空间上随机时滞格系统的随机动力学[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 106-110. |
| [10] | 康云莲, 刘龙生, 赵俊玲. 符号动力系统的因子系统的分布混沌性[J]. 广西师范大学学报(自然科学版), 2013, 31(4): 66-70. |
| [11] | 刘军贤, 裴启明, 覃宗定, 蒋玉凌. Lorenz方程在新参数空间的研究[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 1-12. |
| [12] | 郝丽杰, 蒋贵荣, 鹿鹏. 具垂直传染的SIRS传染病模型的脉冲控制和分岔分析[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 42-47. |
|
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |