广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (4): 120-128.doi: 10.16088/j.issn.1001-6600.2024062102

• 数学与统计学 • 上一篇    下一篇

时空分数阶Sasa-Satsuma方程的行波解和分岔分析

徐健淞, 孙峪怀*   

  1. 四川师范大学 数学科学学院, 四川 成都 610066
  • 收稿日期:2024-06-21 修回日期:2024-10-11 出版日期:2025-07-05 发布日期:2025-07-14
  • 通讯作者: 孙峪怀(1963—),男,四川成都人,四川师范大学教授。E-mail: sunyuhuai63@163.com
  • 基金资助:
    国家自然科学基金(12071323)

Bifurcation of Traveling Wave Solutions for the Time-Space Fractional Sasa-Satsuma Equation

XU Jiansong, SUN Yuhuai*   

  1. School of Mathematical Sciences, Sichuan Normal University, Chengdu Sichuan 610066, China
  • Received:2024-06-21 Revised:2024-10-11 Online:2025-07-05 Published:2025-07-14

摘要: 本文研究时空分数阶Sasa-Satsuma方程行波解的分岔及其动力学行为。首先对时空分数阶Sasa-Satsuma方程进行分数阶复变换,将其转化为等价的常微分系统,推导出对应的平面动力系统;然后对平面动力系统参数不同取值进行讨论,获得对应相图;再根据系统分岔情况,求解时空分数阶Sasa-Satsuma方程不同轨线各类行波解的精确表达式;最后给出部分解的三维图。

关键词: 时空分数阶Sasa-Satsuma方程, 行波解, 动力系统, 分岔

Abstract: In order to study the bifurcation and dynamical behavior of traveling wave solutions of the time-space fractional Sasa-Satsuma equation, the fractional-order complex transformation of the time-space fractional Sasa-Satsuma equation is performed to transform them into an equivalent ordinary differential system,the corresponding plane dynamic system is derived,and the corresponding phase diagram is obtained by discussing the different values of the parameters of the plane dynamic system. According to the bifurcation of the system, the exact expressions of various traveling wave solutions for the time-space fractional Sasa-Satsuma equations with different trajectories are obtained.

Key words: time-space fractional, Sasa-Satsuma equation, traveling wave solutions, dynamical system, bifurcation

中图分类号:  O175.29

[1] IQBAL I, REHMAN H U, ASHRAF H, et al. Soliton unveilings in optical fiber transmission: Examining soliton structures through the Sasa-Satsuma equation[J]. Results in Physics, 2024, 60: 107648. DOI: 10.1016/j.rinp.2024.107648.
[2] GHOSH P K. Conformal symmetry and the nonlinear Schrödinger equation[J]. Physical Review A, 2001, 65(1): 012103. DOI: 10.1103/PhysRevA.65.012103.
[3] CHABCHOUB A, KIBLER B, FINOT C, et al. The nonlinear Schrödinger equation and the propagation of weakly nonlinear waves in optical fibers and on the water surface[J]. Annals of Physics, 2015, 361: 490-500. DOI: 10.1016/j.aop.2015.07.003.
[4] WANG K J, ZHANG P L. Investigation of the periodic solution of the time-space fractional Sasa-Satsuma equation arising in the monomode optical fibers[J]. Europhysics Letters, 2022, 137(6): 62001. DOI: 10.1209/0295-5075/ac2a62.
[5] MIHALACHE D, TORNER L, MOLDOVEANU F, et al. Inverse-scattering approach to femtosecond solitons in monomode optical fibers[J]. Physical Review E, 1993,48(6): 4699-4709. DOI: 10.1103/physreve.48.4699.
[6] KODAMA Y. Optical solitons in a monomode fiber[J]. Journal of Statistical Physics, 1985, 39(5): 597-614. DOI: 10.1007/BF01008354.
[7] AKRAM G, SADAF M, ARSHED S, et al. Optical soliton solutions of fractional Sasa-Satsuma equation with beta and conformable derivatives[J]. Optical and Quantum Electronics, 2022, 54(11): 741. DOI: 10.1007/s11082-022-04153-1.
[8] LI C C, CHEN L W, LI G H. Optical solitons of space-time fractional Sasa-Satsuma equation by F-expansion method[J]. Optik, 2020, 224: 165527. DOI: 10.1016/j.ijleo.2020.165527.
[9] YÉPEZ-MARTÍNEZ H, REZAZADEH H, INC M, et al. Optical solitons of the fractional nonlinear Sasa-Satsuma equation with third-order dispersion and with Kerr nonlinearity law in modulation instability[J]. Optical and Quantum Electronics, 2022, 54(12): 804. DOI: 10.1007/s11082-022-04207-4.
[10] RAHEEL M, ZAFAR A, INC M, et al. Optical solitons to time-fractional Sasa-Satsuma higher-order non-linear Schrödinger equation via three analytical techniques[J]. Optical and Quantum Electronics, 2023, 55(4): 307. DOI: 10.1007/s11082-023-04565-7.
[11] WANG K J, LIU J H. Periodic solution of the time-space fractional Sasa-Satsuma equation in the monomode optical fibers by the energy balance theory[J]. Europhysics Letters, 2022, 138(2): 25002. DOI: 10.1209/0295-5075/ac5c78.
[12] MURAD M A S, ISMAEL H F, SULAIMAN T A, et al. Higher-order time-fractional Sasa-Satsuma equation: various optical soliton solutions in optical fiber[J]. Results in Physics, 2023, 55: 107162. DOI: 10.1016/j.rinp.2023.107162.
[13] 何进春,陈宗蕴,黄念宁.求解DNLS方程的反散射法的基本问题[J].物理学报,2009,58(9):6063-6067. DOI: 10.3321/j.issn:1000-3290.2009.09.028.
[14] 周建军,洪宝剑,卢殿臣.耦合Schrödinger-Boussinesq方程组的显式精确解[J].广西师范大学学报(自然科学版),2013,31(1):11-15. DOI: 10.16088/j.issn.1001-6600.2013.01.016.
[15] FAROOQ A, KHAN M I, NISAR K S, et al. A detailed analysis of the improved modified Korteweg-de Vries equation via the Jacobi elliptic function expansion method and the application of truncated M-fractional derivatives[J]. Results in Physics, 2024, 59: 107604. DOI: 10.1016/j.rinp.2024.107604.
[16] 曹娜,徐丽阳,尹晓军.变系数F展开法求解非线性Schrödinger方程的精确解[J].应用数学,2023,36(1):161-169. DOI: 10.13642/j.cnki.42-1184/o1.2023.01.009.
[17] BORG M, BADRA N M, AHMED H M, et al. Solitons behavior of Sasa-Satsuma equation in birefringent fibers with Kerr law nonlinearity using extended F-expansion method[J]. Ain Shams Engineering Journal, 2024, 15(1): 102290. DOI: 10.1016/j.asej.2023.102290.
[18] 王丽真,沈翔.利用首次积分法求解一致时空分数阶微分方程[J].西北大学学报(自然科学版),2022,52(2):279-287. DOI: 10.16152/j.cnki.xdxbzr.2022-02-014.
[19] LIU H Z. A modification to the first integral method and its applications[J]. Applied Mathematics and Computation, 2022,419: 126855. DOI: 10.1016/j.amc.2021.126855.
[20] KHATER M M A, LU D C, ATTIA R A M. Dispersive long wave of nonlinear fractional Wu-Zhang system via a modified auxiliary equation method[J]. AIP Advances, 2019, 9(2): 025003. DOI: 10.1063/1.5087647.
[21] REHMAN H U, HASSAN M U, SALEEM M S, et al. Soliton solutions of Zakhrov equation in ionized plasma using new extended direct algebraic method[J]. Results in Physics, 2023,46: 106325. DOI: 10.1016/j.rinp.2023.106325.
[22] 胡艳,孙峪怀.应用多项式完全判别系统方法求解时空分数阶复Ginzburg-Landau方程[J].应用数学和力学,2021,42(8):874-880. DOI: 10.21656/1000-0887.410392.
[23] LI Z, FAN W J, MIAO F. Chaotic pattern, phase portrait, sensitivity and optical soliton solutions of coupled conformable fractional Fokas-Lenells equation with spatio-temporal dispersion in birefringent fibers[J]. Results in Physics, 2023,47: 106386. DOI: 10.1016/j.rinp.2023.106386.
[24] TANG L. Bifurcation analysis and optical soliton solutions for the fractional complex Ginzburg-Landau equation in communication systems[J]. Optik, 2023, 276: 170639. DOI: 10.1016/j.ijleo.2023.170639.
[25] AYDIN M E. Effect of local fractional derivatives on Riemann curvature tensor[J]. Examples and Counterexamples, 2024, 5: 100134. DOI: 10.1016/j.exco.2023.100134.
[26] ZHANG Y N, PANG J. He’s homotopy perturbation method and fractional complex transform for analysis time fractional Fornberg-Whitham equation[J]. Sound and Vibration, 2021, 55(4): 295-303. DOI: 10.32604/sv.2021.014445.
[27] ABDELHAQ L, SYAM S M, SYAM M I. An efficient numerical method for two-dimensional fractional integro-differential equations with modified Atangana-Baleanu fractional derivative using operational matrix approach[J]. Partial Differential Equations in Applied Mathematics, 2024, 11: 100824. DOI: 10.1016/j.padiff.2024.100824.
[28] ORTIGUEIRA M D, RODRÍGUEZ-GERMÁ L, TRUJILLO J J. Complex Complex Grünwald-Letnikov, Liouville, Riemann-Liouville, and Caputo derivatives for analytic functions[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(11): 4174-4182. DOI: 10.1016/j.cnsns.2011.02.022.
[29] 吴强,黄建华.分数阶微积分[M].北京:清华大学出版社,2016:185.
[30] KHALIL R, AL HORANI M, YOUSEF A, et al. A new definition of fractional derivative[J]. Journal of Computational and Applied Mathematics, 2014, 264: 65-70. DOI: 10.1016/j.cam.2014.01.002.
[31] YAN F, LIU H H, LIU Z R. The bifurcation and exact travelling wave solutions for the modified Benjamin-Bona-Mahoney (mBBM) equation[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(7): 2824-2832. DOI: 10.1016/j.cnsns.2011.11.014.
[32] 张卫国,杨萌.耦合DSW方程的周期波解与孤波解[J].应用数学学报,2020,43(5):792-820.
[1] 张晓倩, 王磊. 二维分段仿射系统奇异环分岔诱导的极限环[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 98-105.
[2] 陈嘉睿, 凌琳, 蒋贵荣. 脉冲推力作用下上楼梯双足机器人行走的建模与动力学分析[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 131-144.
[3] 邵慧婷, 杨启贵. 具有4个正Lyapunov指数的六维超混沌系统的复杂动力学研究[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 433-444.
[4] 徐王军, 曹进德, 伍代勇, 申传胜. 一类具有迁移和Allee效应的食饵-捕食者系统稳定性[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 103-115.
[5] 阮文静, 杨启贵. 具有有限和无限孤立奇点的新四维超混沌系统的复杂动力学分析[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 173-181.
[6] 李松涛, 李群宏, 张文. 三自由度碰撞振动系统的余维二擦边分岔与混沌控制[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 79-92.
[7] 黄春贤, 周效良. 含等级治疗率与不完全康复率的SIRS模型的分岔分析[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 74-81.
[8] 洪玲玲,杨启贵. 新四维超混沌系统的复杂动力学研究[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 96-105.
[9] 张一进. Xρ空间上随机时滞格系统的随机动力学[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 106-110.
[10] 康云莲, 刘龙生, 赵俊玲. 符号动力系统的因子系统的分布混沌性[J]. 广西师范大学学报(自然科学版), 2013, 31(4): 66-70.
[11] 刘军贤, 裴启明, 覃宗定, 蒋玉凌. Lorenz方程在新参数空间的研究[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 1-12.
[12] 郝丽杰, 蒋贵荣, 鹿鹏. 具垂直传染的SIRS传染病模型的脉冲控制和分岔分析[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 42-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 何安康, 陈艳平, 扈应, 黄瑞章, 秦永彬. 融合边界交互信息的命名实体识别方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 1 -11 .
[2] 卢展跃, 陈艳平, 杨卫哲, 黄瑞章, 秦永彬. 基于掩码注意力与多特征卷积网络的关系抽取方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 12 -22 .
[3] 齐丹丹, 王长征, 郭少茹, 闫智超, 胡志伟, 苏雪峰, 马博翔, 李时钊, 李茹. 基于主题多视图表示的零样本实体检索方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 23 -34 .
[4] 黄川洋, 程灿儿, 李松威, 陈鸿东, 张秋楠, 张钊, 邵来鹏, 唐剑, 王咏梅, 郭奎奎, 陆航林, 胡君辉. 带涂覆层的长周期光纤光栅温度传感特性研究[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 35 -42 .
[5] 田晟, 熊辰崟, 龙安洋. 基于改进PointNet++的城市道路点云分类方法[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 1 -14 .
[6] 黎宗孝, 张健, 罗鑫悦, 赵嶷飞, 卢飞. 基于K-means和Adam-LSTM的机场进场航迹预测研究[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 15 -23 .
[7] 宋铭楷, 朱成杰. 基于H-WOA-GWO和区段修正策略的配电网故障定位研究[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 24 -37 .
[8] 陈禹, 陈磊, 张怡, 张志瑞. 基于QMD-LDBO-BiGRU的风速预测模型[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 38 -57 .
[9] 韩烁, 江林峰, 杨建斌. 基于注意力机制PINNs方法求解圣维南方程[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 58 -68 .
[10] 李志欣, 匡文兰. 结合互注意力空间自适应和特征对集成判别的细粒度图像分类[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 69 -82 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发