广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (1): 180-190.doi: 10.16088/j.issn.1001-6600.2023020701

• 研究论文 • 上一篇    下一篇

生物炭对毛竹林土壤有机碳组分及碳库管理指数的影响

丁苏雅1,2,3, 马姜明1,2,3*, 覃云斌1,2,3*, 黄芳玲1,2,3, 宋丽丽1,2,3, 刘文清1,2,3, 李梦霞1,2,3, 何昕诺1,2,3   

  1. 1.珍稀濒危动植物生态与环境保护教育部重点实验室(广西师范大学),广西 桂林 541006;
    2.广西漓江流域景观资源保育与可持续利用重点实验室(广西师范大学),广西 桂林 541006;
    3.广西师范大学 可持续发展创新研究院,广西 桂林 541006
  • 收稿日期:2023-02-07 修回日期:2023-04-27 出版日期:2024-01-25 发布日期:2024-01-19
  • 通讯作者: 马姜明(1976—),男,江西永新人,广西师范大学教授,博士。E-mail:mjming03@163.com; 覃云斌(1990—),男,广西桂林人,广西师范大学讲师,博士。E-mail:shuibaoqinyunbin@163.com
  • 基金资助:
    广西科技重大专项课题(桂科AA20161002-1);广西重点研发计划项目(桂科AB21220057);广西科技基地和人才专项(桂科AD21220163)

Effects of Biochar on Soil Organic Carbon Composition and Carbon Pool Management Index of Moso Bamboo Forests

DING Suya1,2,3, MA Jiangming1,2,3*, QIN Yunbin1,2,3*, HUANG Fangling1,2,3, SONG Lili1,2,3, LIU Wenqing1,2,3, LI Mengxia1,2,3, HE Xinnuo1,2,3   

  1. 1. Key Laboratory of Ecology and Environmental Protection of Rare and Endangered Animals and Plants (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. Key Laboratory of Conservation and Sustainable Utilization of Landscape Resources in Li River Basin (Guangxi Normal University), Guilin Guangxi 541006, China;
    3. Institute of Sustainable Development Innovation, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2023-02-07 Revised:2023-04-27 Online:2024-01-25 Published:2024-01-19

摘要: 为探究不同生物炭施用量对毛竹林土壤有机碳组分及碳库管理指数的影响,本研究以广西桂林漓江上游毛竹林土壤为研究对象,以毛竹废弃物高温热解制备的生物炭为供试材料,通过一年野外施用试验,探究不同生物炭施用量下(0(CK)、10 t·hm-2(BC1)、20 t·hm-2(BC2)、40 t·hm-2(BC4))毛竹林土壤有机碳活性组分和土壤碳库管理指数变化特征,分析环境因素对其影响。结果表明:与对照(CK)相比,高添加量生物炭(BC4)后土壤pH值、速效磷、速效钾、铵态氮、可溶性有机氮、微生物量氮等含量显著提高,但土壤全磷含量显著降低(P<0.05)。生物炭对总有机碳、易氧化有机碳、颗粒有机碳及碳库管理指数等有显著的促进作用,均在生物炭施用量为40 t·hm-2时达到最大值。相关分析表明,土壤碳库管理指数与pH、NH+4-N、EOC、POC均呈极显著正相关关系(P<0.01)。路径分析模型表明在生物炭添加下,土壤性质和可利用性养分直接影响活性碳组分,进而影响土壤碳库管理指数。综上所述,毛竹林中施用生物炭是提高土壤质量、促进土壤碳固存及合理利用竹林废弃物的有效手段,其中生物炭添加量为40 t·hm-2的处理效果最优。

关键词: 毛竹林, 生物炭, 土壤有机碳, 碳库管理指数, 活性有机碳

Abstract: To explore the effects of different biochar application amounts on soil organic carbon components and carbon pool management index of moso bamboo forests, this study took the soil of the moso bamboo forests in the upper reaches of the Lijiang River as objects, and the biochar from high-temperature pyrolysis of bamboo waste materials as test materials. After the one-year field application experiment in the moso bamboo forests, the changed characteristics of soil active organic carbon components and soil carbon pool management index under different biochar application amounts (0 (CK), 10 t·hm-2 (BC1), 20 t·hm-2 (BC2), 40 t·hm-2 (BC4)) were measured, and the impact of environmental factors on them were analyzed. The results showed that: the high additive amounts of the biochar (BC4) significantly increased the contents of soil pH, available phosphorus, available potassium, ammonium nitrogen, soluble organic nitrogen, and microbial biomass nitrogen to compare with that of the control treatment (CK), but significantly decreased soil total phosphorus content (P<0.05). Biochar could significantly promote the total organic carbon, easily oxidized organic carbon, particulate organic carbon and carbon pool management index. All of them reached the maximum at the treatment of BC4. The correlation analysis showed that the soil carbon pool management index was positively related to pH, NH+4-N, EOC, and POC (P<0.01). A path analysis model found that soil properties and available nutrients directly affected the active carbon components, and then indirectly affected the soil carbon pool management index after adding the biochar. In summary, the application of biochar in the moso bamboo forests was an effective pathway to improve soil quality, promote soil carbon sequestration and appropriately use bamboo waste materials. The best effect in the studied area was the treatment of biochar amount with 40 t·hm-2.

Key words: moso bamboo forest, biochar, soil organic carbon, carbon pool management index, active organic carbon

中图分类号:  S714.5

[1] SONG Y Z, LI Y F, CAI Y J, et al. Biochar decreases soil N2O emissions in Moso bamboo plantations through decreasing labile N concentrations, N-cycling enzyme activities and nitrification/denitrification rates[J]. Geoderma, 2019, 348: 135-145. DOI: 10.1016/j.geoderma.2019.04.025.
[2] 李玉敏, 冯鹏飞. 基于第九次全国森林资源清查的中国竹资源分析[J]. 世界竹藤通讯, 2019, 17(6): 45-48. DOI: 10.1016/j.geoderma.2019.04.025.
[3] 王树梅, 范少辉, 肖箫, 等. 带状采伐对毛竹地上生物量分配及异速生长的影响[J]. 南京林业大学学报 (自然科学版), 2021, 45(5): 19-24. DOI: 10.12302/j.issn.1000-2006.202012006.
[4] 吕衡, 张健, 杨阳阳, 等. 竹林生态系统碳汇的组分、固定机制及研究方向[J]. 竹子学报, 2022, 40(3): 90-94. DOI: 10.3969/j.cnki.issn1000-6567.2022.03.014.
[5] 肖淑媛, 任开格, 王娟, 等.施肥对我国竹笋生产与竹林土壤环境的影响[J].农业现代化研究, 2022, 43(6): 1101-1109.DOI: 10.13872/j.1000-0275.2022.099.
[6] 曹林桦,刘彩霞,刘茗, 等.集约经营对毛竹林土壤反硝化细菌丰度的影响[J].土壤学报, 2020, 57(3):710-720. DOI: 10.11766/trxb201810150520.
[7] 倪惠菁, 储昊煜, 苏文会, 等. 经营强度对毛竹林土壤团聚体稳定性和碳氮磷分布的影响[J].应用生态学报, 2023, 34(4):928-936.DOI: 10.13287/j.1001-9332.202304.002.
[8] CHEN J H, WU Q F, LI S H, et al. Diversity and function of soil bacterial communities in response to long-term intensive management in a subtropical bamboo forest[J]. Geoderma, 2019, 354: 113894. DOI: 10.1016/j.geoderma.2019.113894.
[9] CAI X Q, LIN Z W, PENTTINEN P, et al. Effects of conversion from a natural evergreen broadleaf forest to a Moso bamboo plantation on the soil nutrient pools, microbial biomass and enzyme activities in a subtropical area[J]. Forest Ecology and Management, 2018, 422: 161-171.DOI: 10.1016/j.foreco.2018.04.022.
[10] 童凌晨, 李强, 岳鹏鹏. 基于CiteSpace的喀斯特土壤有机碳研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(4):22-34.DOI: 10.16088/j.issn.1001-6600.2021052502.
[11] 白义鑫, 盛茂银, 胡琪娟, 等. 西南喀斯特石漠化环境下土地利用变化对土壤有机碳及其组分的影响[J]. 应用生态学报, 2020, 31(5): 1607-1616. DOI: 10.13287/j.1001-9332.202005.016.
[12] 刘吉平,张劲松. 湿地土壤活性有机碳研究进展[J]. 环境影响评价,2023,45(1):88-94. DOI: 10.14068/j.ceia.2023.01.018.
[13] BLAIR G J, LEFROY R D B, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995, 46(7): 1459-1466. DOI: 10.1071/AR9951459.
[14] XU C Y, DU C, JIAN J S, et al. The interplay of labile organic carbon, enzyme activities and microbial communities of two forest soils across seasons[J]. Scientific Reports, 2021, 11(1): 5002. DOI: 10.1038/s41598-021-84217-6.
[15] GUAN J Q, SONG C X, WU Y D, et al. Responses of soil active organic carbon fractions and enzyme activities to freeze-thaw cycles in wetlands[J]. Wetlands, 2022, 42(5): 36. DOI: 10.1007/s13157-022-01553-7.
[16] XIAO S S, ZHANG J, DUAN J, et al. Soil organic carbon sequestration and active carbon component changes following different vegetation restoration ages on severely eroded red soils in subtropical China[J]. Forests, 2020, 11(12): 1304. DOI: 10.3390/f11121304.
[17] HE L Y, LU S X, WANG C G, et al. Changes in soil organic carbon fractions and enzyme activities in response to tillage practicesin the Loess Plateau of China[J]. Soil and Tillage Research, 2021, 209: 104940. DOI: 10.1016/j.still.2021.104940.
[18] SUN H F, LI X L, JIN L Q, et al. Effects of biological soil crusts on soil labile organic carbon of patchy alpine meadows in the Source Zone of the Yellow River, West China[J]. Catena, 2023, 220: 106715. DOI: 10.1016/j.catena.2022.106715.
[19] LEFROY R D B, BLAIR G J, STRONG W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance[J]. Plant and Soil, 1993, 155(1): 399-402. DOI: 10.1007/BF00025067.
[20] JIANG X, XU D P, RONG J J, et al. Landslide and aspect effects on artificial soil organic carbon fractions and the carbon pool management index on road-cut slopes in an alpine region[J]. Catena, 2021, 199: 105094. DOI: 10.1016/j.catena.2020.105094.
[21] LIN M X, LI F Y, LI X T, et al. Biochar-clay, biochar-microorganism and biochar-enzyme composites for environmental remediation: a review[J]. Environmental Chemistry Letters, 2023, 21(3): 1837-1862. DOI: 10.1007/s10311-023-01582-6.
[22] 钟文晶, 符帝俊, 齐丹, 等.生物炭的制备及其应用研究进展[J].海南热带海洋学院学报,2022,29(2):101-108. DOI: 10.13307/j.issn.2096-3122.2022.02.15.
[23] 杨彩迪, 宗玉统, 卢升高. 不同生物炭对酸性农田土壤性质和作物产量的动态影响[J]. 环境科学, 2020, 41(4): 1914-1920. DOI: 10.13227/j.hjkx.201910102.
[24] 张晓丽, 孔凡磊, 刘晓林, 等. 生物质改良剂对川西北地区高寒草地沙化土壤有机碳特征的影响[J].中国生态农业学报(中英文),2019,27(11):1732-1743. DOI: 10.13930/j.cnki.cjea.190248.
[25] LI Y F, HU S D, CHEN J H, et al. Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review[J]. Journal of Soils and Sediments, 2018, 18(2): 546-563.DOI: 10.1007/s11368-017-1906-y.
[26] 王吉元, 夏浩, 李宇轩, 等. 不同原料生物炭对酸性红壤氮素转化及理化性质的影响[J].华中农业大学学报(自然科学版),2022,41(2):61-70. DOI: 10.13300/j.cnki.Hnlkxb.2022.02.008.
[27] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
[28] KHAN S, ISMAIL M, IBRAR M, et al. The effect of biochar on soil organic matter, total N in soil and plant, nodules, grain yield and biomass of mung bean[J]. Soil and Environment, 2020, 39(1): 87-94. DOI: 10.25252/SE/2020/132088.
[29] ZHANG F T, CHEN X, YAO S H, et al. Responses of soil mineral-associated and particulate organic carbon to carbon input: a meta-analysis[J]. The Science of the Total Environment, 2022, 829: 154626. DOI: 10.1016/j.scitotenv.2022.154626.
[30] 孔健健, 李梦, 齐楠, 等. 模拟冻融循环作用下添加秸秆对土壤氮动态的影响[J].沈阳师范大学学报 (自然科学版),2022,40(6):527-534.DOI: 10.3969/j.issn.1673.5862.2022.06.009.
[31] 孟艳, 沈亚文, 孟维伟, 等. 生物炭施用对农田土壤团聚体及有机碳影响的整合分析[J/OL].环境科学:1-13[2023-04-24]. DOI: 10.13227/j.hjkx.202210300.
[32] 张健乐, 曾小英, 史东梅, 等. 生物炭对紫色土坡耕地侵蚀性耕层土壤有机碳的影响[J].环境科学,2022,43(4):2209-2218. DOI: 10.13227/j.hjkx.202107160.
[33] XU L, FANG H Y, DENG X, et al. Biochar application increased ecosystem carbon sequestration capacity in a Moso bamboo forest[J]. Forest Ecology and Management, 2020, 475:118447. DOI: 10.1016/j.foreco.2020.118447.
[34] LENG L J, HUANG H J, LI H, et al. Biochar stability assessment methods: a review[J]. Science of the Total Environment, 2019, 647: 210-222. DOI: 10.1016/j.scitotenv.2018.07.402.
[35] JINDO K, SONOKI T. Comparative assessment of biochar stability using multiple indicators[J]. Agronomy, 2019, 9(5): 254. DOI: 10.3390/agronomy9050254.
[36] JING F Q, SUN Y Q, LIU Y Y, et al. Interactions between biochar and clay minerals in changing biochar carbon stability[J]. The Science of the Total Environment, 2022, 809: 151124. DOI: 10.1016/j.scitotenv.2021.151124.
[37] AZEEM M, HAYAT R, HUSSAIN Q, et al. Biochar improves soil quality and N2-fixation and reduces net ecosystem CO2 exchange in a dryland legume-cereal cropping system[J]. Soil and Tillage Research, 2019, 186: 172-182. DOI: 10.1016/j.still.2018.10.007.
[38] 张淑香, 张文菊, 徐明岗. 土壤活性有机碳的影响因素与综合分析[J]. 中国农业科学, 2020, 53(6): 1178-1179.DOI: 10.3864/j.issn.0578.1752.2020.06.009.
[39] YANG X, WANG D, LAN Y, et al. Labile organic carbon fractions and carbon pool management index in a 3-year field study with biochar amendment[J]. Journal of Soils and Sediments, 2018, 18(4): 1569-1578. DOI: 10.1007/s11368-017-1874-2.
[40] JIANG M H, LI C B, GAO W C, et al. Comparison of long-term effects of biochar application on soil organic carbon and its fractions in two ecological sites in karst regions[J]. Geoderma Regional, 2022, 28: e00477. DOI: 10.1016/j.geodrs.2021.e00477.
[41] WU D, ZHANG W M, XIU L Q, et al. Soybean yield response of biochar-regulated soil properties and root growth strategy[J]. Agronomy, 2022, 12(6): 1412. DOI: 10.3390/agronomy12061412.
[42] 孙娇, 周涛, 郭鑫年, 等. 添加秸秆及生物质炭对风沙土有机碳及其活性组分的影响[J]. 土壤, 2021, 53(4): 802-808. DOI: 10.13758/j.cnki.tr.2021.04.018.
[43] QIU H S, LIU J Y, BOORBOORI M R, et al. Effect of biochar application rate on changes in soil labile organic carbon fractions and the association between bacterial community assembly and carbon metabolism with time[J]. The Science of the Total Environment, 2023, 855: 158876. DOI: 10.1016/j.scitotenv.2022.158876.
[44] PITUELLO C, DAL FERRO N, FRANCIOSO O, et al. Effects of biochar on the dynamics of aggregate stability in clay and sandy loam soils[J]. European Journal of Soil Science, 2018, 69(5): 827-842. DOI: 10.1111/ejss.12676.
[45] 宋凯悦, 尹云锋, 马亚培, 等. 氮沉降背景下生物炭施用对土壤有机碳组分的影响[J]. 水土保持学报, 2022, 36(2): 247-254. DOI: 10.13870/j.cnki.stbcxb.2022.02.031.
[46] FENG Z J, FAN Z L, SONG H P, et al. Biochar induced changes of soil dissolved organic matter: the release and adsorption of dissolved organic matter by biochar and soil[J]. The Science of the Total Environment, 2021, 783: 147091. DOI: 10.1016/j.scitotenv.2021.147091.
[47] 朱利霞, 陈居田, 徐思薇, 等. 生物炭施用下土壤微生物量碳氮的动态变化[J].中国农业科技导报,2021,23(8):193-200. DOI: 10.13304/j.nykjdb.2020.0416.
[48] 刘杰云, 邱虎森, 汤宏, 等. 生物质炭对双季稻水稻土微生物生物量碳、氮及可溶性有机碳氮的影响[J].环境科学,2019,40(8):3799-3807. DOI: 10.13227/j.hjkx.201901182.
[49] 王斐, 马锐豪, 夏开, 等.森林转换对土壤活性有机碳组分的影响[J]. 水土保持研究,2023,30(1):233-240. DOI: 10.13869/j.cnki.rswc.2023.01.021.
[50] 么秀颖, 张宝军, 闫丹丹, 等. 盐城滨海湿地土壤活性有机碳组分分布特征[J].应用与环境生物学报, 2023, 29(5): 1186-1193. DOI: 10.19675/j.cnki.1006-687x.2022.09037.
[51] 黎嘉成, 高明, 田冬, 等. 秸秆及生物炭还田对土壤有机碳及其活性组分的影响[J]. 草业学报, 2018, 27(5): 39-50. DOI: 10.11686/cyxb2017261.
[52] 贺美, 王迎春, 王立刚, 等. 深松施肥对黑土活性有机碳氮组分及酶活性的影响[J]. 土壤学报, 2020, 57(2): 446-456. DOI: 10.11766/trxb201810180282.
[53] 刘强, 梁鑫, 董佩丽,等.不同施肥措施对黄土丘陵区农田土壤有机碳组分和碳库管理指数的影响[J].土壤, 2023, 55(2):446-452. DOI: 10.13758/j.cnki.tr.2023.02.027.
[54] 陆畅, 徐畅, 黄容, 等. 秸秆和生物炭对油菜-玉米轮作下紫色土有机碳及碳库管理指数的影响[J]. 草业科学, 2018, 35(3): 482-490.DOI: 10.11829/j.issn.1001-0629.2017-0345.
[55] JIANG J, ZHANG R Z, WU J, et al. Effect of different biochar application rates on soil organic carbon in the semi-arid Loess Plateau, China[J]. Communications in Soil Science and Plant Analysis, 2021, 52(5): 423-431. DOI: 10.1080/00103624.2020.1845357.
[56] 杨淑琪,唐芬,杨桦,等. 滇南地区桃树种植模式对土壤有机碳组分及碳库管理指数的影响[J].生态学报,2023,43(1):290-303.DOI: 10.5846/stxb2021112103508.
[57] RASMUSSEN C, HECKMAN K, WIEDER W R, et al. Beyond clay: towards an improved set of variables for predicting soil organic matter content[J]. Biogeochemistry, 2018, 137(3): 297-306. DOI: 10.1007/s10533-018-0424-3.
[58] 王玉鑫, 付晓莉,王辉民,等. 氮磷添加对杉木根叶分解残余物微生物群落结构及酶活性的影响[J].生态学报,2021,41(13):5408-5416. DOI: 10.5846/stxb202005111173.
[1] 尹理亚, 丁开, 杜文泽, 芦天亮, 王剑峰, 韩丽. 金属/非金属和氮共掺杂生物炭的制备及其在有机污水处理中的应用进展[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 9-17.
[2] 王军广, 王鹏, 赵志忠, 唐薇, 赵泽阳, 李燕. 海南岛东部地区土地利用方式对土壤有机碳含量的影响[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 171-179.
[3] 王琳清, 鄢韬, 陈永坚, 李富荣, 王旭, 李文英, 杜瑞英, 杨秀丽. 不同水分条件下施用调理剂对土壤铅镉的钝化效应[J]. 广西师范大学学报(自然科学版), 2023, 41(4): 231-242.
[4] 邓华, 张俊渝, 黄瑞, 王威, 胡乐宁. 竹炭负载氧化锌对Cr(Ⅵ)的吸附性能和机理[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 131-142.
[5] 童凌晨, 李强, 岳鹏鹏. 基于CiteSpace的喀斯特土壤有机碳研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 22-34.
[6] 曹新光, 岳伟鹏, 邓洁. 北亚热带山地不同海拔土壤有机碳分布特征——以鄂东龟峰山为例[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 174-182.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 罗云演, 李容正, 李冰, 丁晨旭. 响应面优化多刺绿绒蒿总生物碱提取工艺[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 84 -90 .
[2] 董淑龙, 马姜明, 辛文杰. 景观视觉评价研究进展与趋势——基于CiteSpace的知识图谱分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 1 -13 .
[3] 郭嘉梁, 靳婷. 基于语义增强的多模态情感分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 14 -25 .
[4] 吴正清, 曹晖, 刘宝锴. 基于注意力卷积神经网络的中文虚假评论检测[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 26 -36 .
[5] 梁正友, 蔡俊民, 孙宇, 陈磊. 结合残差动态图卷积与特征强化的点云分类[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 37 -48 .
[6] 欧阳舒歆, 王洺钧, 荣垂田, 孙华波. 基于改进LSTM的多维QAR数据异常检测[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 49 -60 .
[7] 李依洋, 曾才斌, 黄在堂. 分数Brown运动驱动的具有壁附着的恒化器模型的随机吸引子[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 61 -68 .
[8] 李鹏博, 李永祥. 外部区域上p-Laplace方程的径向对称解[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 69 -75 .
[9] 吴子弦, 成军, 符坚铃, 周心雯, 谢佳龙, 宁全. 基于PI的Semi-Markovian电力系统事件触发控制设计分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 76 -85 .
[10] 程蕾, 闫普选, 杜博豪, 叶思, 邹华红. MOF-2的水相合成及其热稳定和介电性能研究[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 86 -95 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发