|
广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (3): 210-220.doi: 10.16088/j.issn.1001-6600.2022050903
杨文1, 苏迎杰1, 侯东睿2, 罗静1, 孙庆功1, 张孟洋2, 杨豪2, 王剑峰2*
YANG Wen1, SU Yingjie1, HOU Dongrui2, LUO Jing1, SUN Qinggong1, ZHANG Mengyang2, YANG Hao2, WANG Jianfeng2*
摘要: 采用水热煅烧法合成CuO/MIL(Cr, Cu)非均相类芬顿催化剂,对CuO/MIL(Cr, Cu)复合材料进行了XRD、FT-IR、SEM、XPS、BET等表征,结果表明CuO均匀分散在金属有机框架MIL(Cr, Cu)的表面。对不同催化剂催化降解苯酚的性能进行比较。结果表明,当催化剂用量为0.3 g/L,H2O2浓度为50 mmol/L,pH=6,初始底物浓度为30 mg/L时,CuO/MIL(Cr, Cu)复合材料对苯酚的降解效果可达100%,降解效果优于CuO、MIL-101(Cr)。通过自由基猝灭实验和EPR测试等证明·OH是催化体系主要的活性自由基,并给出其可能的催化降解机理。CuO/MIL(Cr, Cu)复合材料可在近中性条件下降解酚类污染物,具有良好的应用前景。
中图分类号: X703;TQ426.94
[1] FORTUNY A, FONT J, FABREGAT A. Wet air oxidation of phenol using active carbon as catalyst[J]. Applied Catalysis B: Environmental, 1998, 19(3/4): 165-173. DOI: 10.1016/S0926-3373(98)00072-1. [2] VILLEGAS L G C, MASHHADI N, CHEN M, et al. A short review of techniques for phenol removal from wastewater[J]. Current Pollution Reports, 2016, 2(3): 157-167. DOI: 10.1007/s40726-016-0035-3. [3] SUN X F, WANG C W, LI Y B, et al. Treatment of phenolic wastewater by combined UF and NF/RO processes[J]. Desalination, 2015, 355: 68-74. DOI: 10.1016/j.desal.2014.10.018. [4] KULKARNI S J, KAWARE J P. Review on research for removal of phenol from wastewater[J]. International Journal of Scientific and Research Publications, 2013, 3(4): 1-5. [5] ALSHABIB M, ONAIZI S A. A review on phenolic wastewater remediation using homogeneous and heterogeneous enzymatic processes: current status and potential challenges[J]. Separation and Purification Technology, 2019, 219: 186-207. DOI: 10.1016/j.seppur.2019.03.028. [6] FAN X L, CAO Q Q, MENG F Y, et al. A Fenton-like system of biochar loading Fe-Al layered double hydroxides (FeAl-LDH@BC)/H2O2 for phenol removal[J]. Chemosphere, 2021, 266: 128992. DOI: 10.1016/j.chemosphere.2020.128992. [7] PI Y H, LI X Y, XIA Q B, et al. Adsorptive and photocatalytic removal of persistent organic pollutants (POPs) in water by metal-organic frameworks (MOFs)[J]. Chemical Engineering Journal, 2018, 337: 351-371. DOI: 10.1016/j.cej.2017.12.092. [8] ZANCHETTIN G, DA SILVA FALK G, GÓMEZ GONZÁLEZ S Y, et al. High performance magnetically recoverable Fe3O4 nanocatalysts: fast microwave synthesis and photo-Fenton catalysis under visible-light[J]. Chemical Engineering and Processing-Process Intensification, 2021, 166: 108438. DOI: 10.1016/j.cep.2021.108438. [9] 邵禹萌,崔宝臣,刘淑芝,等.MIL-101(Cr)催化单过硫酸氢钾降解罗丹明B[J].净水技术,2019,38(10):88-93. DOI:10.15890/j.cnki.jsjs.2019.10.016. [10] DE VOORDE B V, BUEKEN B, DENAYER J, et al. Adsorptive separation on metal-organic frameworks in the liquid phase[J]. Chemical Society Reviews, 2014, 43(16): 5766-5788. DOI: 10.1039/C4CS00006D. [11] WU C D, ZHAO M. Incorporation of molecular catalysts in metal-organic frameworks for highly efficient heterogeneous catalysis[J]. Advanced Materials, 2017, 29(14): 1605446. DOI: 10.1002/adma.201605446. [12] KHAN M S, KHALID M, SHAHID M. What triggers dye adsorption by metal organic frameworks? The current perspectives[J]. Materials Advances, 2020, 1(6): 1575-1601. DOI: 10.1039/D0MA00291G. [13] 任逸,施梦琦,尹越,等.Fe2O3/MIL-53(Al)催化类芬顿氧化性能及其作用机制研究[J].环境科学学报,2019,39(8):2508-2516. DOI:10.13671/j.hjkxxb.2019.0103. [14] REN Y, SHI M Q, ZHANG W M, et al. Enhancing the Fenton-like catalytic activity of nFe2O3 by MIL-53(Cu) support: a mechanistic investigation[J]. Environmental Science & Technology, 2020, 54(8): 5258-5267. DOI: 10.1021/acs.est.0c00203. [15] 张宗伟,李酽,初飞雪.稀土、Fe3+掺杂TiO2光催化降解水中氨氮研究[J].广西师范大学学报(自然科学版),2014,32(2):117-121. DOI:10.3969/j.issn.1001-6600.2014.02.020. [16] MA R, LIU G M, FENG S H, et al. Optimization and effects of catalytic ozonation of actual phenolic wastewater by CuO/Al2O3[J]. China Petroleum Processing and Petrochemical Technology, 2019, 21(3): 74-80. [17] 刘剑,王彩瑜,彭钢,等.5A分子筛载CuO对甲基橙的催化湿式过氧化氢氧化[J].材料导报,2018,32(S2):218-222. [18] ZHONG Z, LI M, FU J H, et al. Construction of Cu-bridged Cu2O/MIL(Fe/Cu) catalyst with enhanced interfacial contact for the synergistic photo-Fenton degradation of thiacloprid[J]. Chemical Engineering Journal, 2020, 395: 125184. DOI: 10.1016/j.cej.2020.125184. [19] 焦华,王君龙.CuO微/纳米结构的可控合成与红外性质[J].粉末冶金材料科学与工程,2013,18(5):700-705. DOI:10.3969/j.issn.1673-0224.2013.05.013. [20] 蔡培新,陈建民,顾为芳.YBa2Cu3O7-δ中Cu—O伸缩振动的红外吸收峰[J].低温物理学报,1993,10(5):345-349. [21] GEORGE A, MAGIMAI ANTONI RAJ D, DHAYAL RAJ A, et al. Morphologically tailored CuO nanostructures toward visible-light-driven photocatalysis[J]. Materials Letters, 2020, 281: 128603. DOI: 10.1016/j.matlet.2020.128603. [22] BIESINGER M C, PAYNE B P, GROSVENOR A P, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni[J]. Applied Surface Science, 2011, 257(7): 2717-2730. DOI: 10.1016/j.apsusc.2010.10.051. [23] ARONNIEMI M, SAINIO J, LAHTINEN J. Chemical state quantification of iron and chromium oxides using XPS: the effect of the background subtraction method[J]. Surface Science, 2005, 578(1/3): 108-123. DOI: 10.1016/j.susc.2005.01.019. [24] YAO Y J, LU F, ZHU Y P, et al. Magnetic core-shell CuFe2O4@C3N4 hybrids for visible light photocatalysis of Orange II[J]. Journal of Hazardous Materials, 2015, 297: 224-233. DOI: 10.1016/j.jhazmat.2015.04.046. [25] WANG J, FAN D Q, YU T, et al. Improvement of low-temperature hydrothermal stability of Cu/SAPO-34 catalysts by Cu2+ species[J]. Journal of Catalysis, 2015, 322: 84-90. DOI: 10.1016/j.jcat.2014.11.010. [26] LIU J, CUI J N, ZHAO T Y, et al. Fe3O4-CeO2 loaded on modified activated carbon as efficient heterogeneous catalyst[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 565: 59-69. DOI: 10.1016/j.colsurfa.2018.12.052. [27] 张丹薇.铜铈二元混合氧化物催化过硫酸氢钾降解苯酚研究[D].哈尔滨:哈尔滨工业大学,2013. DOI:10.7666/d.D594691. [28] NIU H Y, ZHENG Y, WANG S H, et al. Continuous generation of hydroxyl radicals for highly efficient elimination of chlorophenols and phenols catalyzed by heterogeneous Fenton-like catalysts yolk/shell Pd@Fe3O4@metal organic frameworks[J]. Journal of Hazardous Materials, 2018, 346: 174-183. DOI: 10.1016/j.jhazmat.2017.12.027. [29] LUO M Y, LI M F, JIANG S, et al. Supported growth of inorganic-organic nanoflowers on 3D hierarchically porous nanofibrous membrane for enhanced enzymatic water treatment[J]. Journal of Hazardous Materials, 2020, 381: 120947. DOI: 10.1016/j.jhazmat.2019.120947. [30] 方嘉声,于光认,陈晓春,等.石墨烯掺杂分子筛负载氧化铁芬顿催化降解苯酚影响因素的研究[J].环境科学学报,2015,35(11):3529-3537. DOI:10.13671/j.hjkxxb.2014.1069. [31] 封立伟.Fe/AC非均相Fenton体系降解废水中苯酚研究[J].工业用水与废水,2019,50(3):26-29. DOI:10.3969/j.issn.1009-2455.2019.03.006. |
[1] | 曾明华, 李丹丹, 殷政, 王强心, 张东材. 刚性柱双π墙金属有机框架:单晶到单晶结构转换,碘富集与缓释,协同导电性研究[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 171-177. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |