广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (3): 210-220.doi: 10.16088/j.issn.1001-6600.2022050903

• 研究论文 • 上一篇    下一篇

CuO/MIL(Cr, Cu)复合材料的制备及其类芬顿催化降解苯酚性能研究

杨文1, 苏迎杰1, 侯东睿2, 罗静1, 孙庆功1, 张孟洋2, 杨豪2, 王剑峰2*   

  1. 1.郑州大学 化工学院, 河南 郑州 450007;
    2.郑州大学 生态与环境学院, 河南 郑州 450007
  • 收稿日期:2022-05-09 修回日期:2022-05-17 出版日期:2023-05-25 发布日期:2023-06-01
  • 通讯作者: 王剑峰(1972—), 女, 河南淇县人, 郑州大学副教授, 博士。E-mail: 1514903022@qq.com
  • 基金资助:
    国家自然科学基金(22178326)

Preparation of CuO/MIL(Cr, Cu) Composite and Its Performance in Fenton-like Catalytic Degradation of Phenol

YANG Wen1, SU Yingjie1, HOU Dongrui2, LUO Jing1, SUN Qinggong1, ZHANG Mengyang2, YANG Hao2, WANG Jianfeng2*   

  1. 1. School of Chemical Engineering, Zhengzhou University, Zhengzhou Henan 450007, China;
    2. School of Ecology and Environment, Zhengzhou University, Zhengzhou Henan, 450007, China
  • Received:2022-05-09 Revised:2022-05-17 Online:2023-05-25 Published:2023-06-01

摘要: 采用水热煅烧法合成CuO/MIL(Cr, Cu)非均相类芬顿催化剂,对CuO/MIL(Cr, Cu)复合材料进行了XRD、FT-IR、SEM、XPS、BET等表征,结果表明CuO均匀分散在金属有机框架MIL(Cr, Cu)的表面。对不同催化剂催化降解苯酚的性能进行比较。结果表明,当催化剂用量为0.3 g/L,H2O2浓度为50 mmol/L,pH=6,初始底物浓度为30 mg/L时,CuO/MIL(Cr, Cu)复合材料对苯酚的降解效果可达100%,降解效果优于CuO、MIL-101(Cr)。通过自由基猝灭实验和EPR测试等证明·OH是催化体系主要的活性自由基,并给出其可能的催化降解机理。CuO/MIL(Cr, Cu)复合材料可在近中性条件下降解酚类污染物,具有良好的应用前景。

关键词: 非均相催化剂, 类芬顿, 金属有机框架, 氧化铜, 苯酚废水

Abstract: CuO/MIL(Cr, Cu) heterogeneous Fenton-like catalysts were synthesized by hydrothermal calcination. The CuO/MIL(Cr, Cu) composite was characterized by XRD, FT-IR, SEM, XPS, BET, etc. The results showed that CuO was uniformly dispersed on the surface of the metal-organic framework MIL(Cr, Cu). In addition, the performance of different catalysts for the catalytic degradation of phenol were compared. The results of degradation experiments showed that when the catalyst dosage was 0.3 g/L, the H2O2 concentration was 50 mmol/L, pH=6, and the initial substrate concentration was 30 mg/L, the CuO/MIL(Cr, Cu) composite had the best degradation efficiency as high as almost 100%, better than that of CuO and MIL-101(Cr). Finally, the radical quenching experimentand EPR test proved that ·OH was the main active radical in the catalytic system, and the possible catalytic mechanism was proposed. CuO/MIL(Cr, Cu) composite can degrade phenolic pollutants in the near-neutral range and have good application prospects.

Key words: heterogeneous catalyst, Fenton-like, metal organic framework, copper oxide, phenol wastewater

中图分类号:  X703;TQ426.94

[1] FORTUNY A, FONT J, FABREGAT A. Wet air oxidation of phenol using active carbon as catalyst[J]. Applied Catalysis B: Environmental, 1998, 19(3/4): 165-173. DOI: 10.1016/S0926-3373(98)00072-1.
[2] VILLEGAS L G C, MASHHADI N, CHEN M, et al. A short review of techniques for phenol removal from wastewater[J]. Current Pollution Reports, 2016, 2(3): 157-167. DOI: 10.1007/s40726-016-0035-3.
[3] SUN X F, WANG C W, LI Y B, et al. Treatment of phenolic wastewater by combined UF and NF/RO processes[J]. Desalination, 2015, 355: 68-74. DOI: 10.1016/j.desal.2014.10.018.
[4] KULKARNI S J, KAWARE J P. Review on research for removal of phenol from wastewater[J]. International Journal of Scientific and Research Publications, 2013, 3(4): 1-5.
[5] ALSHABIB M, ONAIZI S A. A review on phenolic wastewater remediation using homogeneous and heterogeneous enzymatic processes: current status and potential challenges[J]. Separation and Purification Technology, 2019, 219: 186-207. DOI: 10.1016/j.seppur.2019.03.028.
[6] FAN X L, CAO Q Q, MENG F Y, et al. A Fenton-like system of biochar loading Fe-Al layered double hydroxides (FeAl-LDH@BC)/H2O2 for phenol removal[J]. Chemosphere, 2021, 266: 128992. DOI: 10.1016/j.chemosphere.2020.128992.
[7] PI Y H, LI X Y, XIA Q B, et al. Adsorptive and photocatalytic removal of persistent organic pollutants (POPs) in water by metal-organic frameworks (MOFs)[J]. Chemical Engineering Journal, 2018, 337: 351-371. DOI: 10.1016/j.cej.2017.12.092.
[8] ZANCHETTIN G, DA SILVA FALK G, GÓMEZ GONZÁLEZ S Y, et al. High performance magnetically recoverable Fe3O4 nanocatalysts: fast microwave synthesis and photo-Fenton catalysis under visible-light[J]. Chemical Engineering and Processing-Process Intensification, 2021, 166: 108438. DOI: 10.1016/j.cep.2021.108438.
[9] 邵禹萌,崔宝臣,刘淑芝,等.MIL-101(Cr)催化单过硫酸氢钾降解罗丹明B[J].净水技术,2019,38(10):88-93. DOI:10.15890/j.cnki.jsjs.2019.10.016.
[10] DE VOORDE B V, BUEKEN B, DENAYER J, et al. Adsorptive separation on metal-organic frameworks in the liquid phase[J]. Chemical Society Reviews, 2014, 43(16): 5766-5788. DOI: 10.1039/C4CS00006D.
[11] WU C D, ZHAO M. Incorporation of molecular catalysts in metal-organic frameworks for highly efficient heterogeneous catalysis[J]. Advanced Materials, 2017, 29(14): 1605446. DOI: 10.1002/adma.201605446.
[12] KHAN M S, KHALID M, SHAHID M. What triggers dye adsorption by metal organic frameworks? The current perspectives[J]. Materials Advances, 2020, 1(6): 1575-1601. DOI: 10.1039/D0MA00291G.
[13] 任逸,施梦琦,尹越,等.Fe2O3/MIL-53(Al)催化类芬顿氧化性能及其作用机制研究[J].环境科学学报,2019,39(8):2508-2516. DOI:10.13671/j.hjkxxb.2019.0103.
[14] REN Y, SHI M Q, ZHANG W M, et al. Enhancing the Fenton-like catalytic activity of nFe2O3 by MIL-53(Cu) support: a mechanistic investigation[J]. Environmental Science & Technology, 2020, 54(8): 5258-5267. DOI: 10.1021/acs.est.0c00203.
[15] 张宗伟,李酽,初飞雪.稀土、Fe3+掺杂TiO2光催化降解水中氨氮研究[J].广西师范大学学报(自然科学版),2014,32(2):117-121. DOI:10.3969/j.issn.1001-6600.2014.02.020.
[16] MA R, LIU G M, FENG S H, et al. Optimization and effects of catalytic ozonation of actual phenolic wastewater by CuO/Al2O3[J]. China Petroleum Processing and Petrochemical Technology, 2019, 21(3): 74-80.
[17] 刘剑,王彩瑜,彭钢,等.5A分子筛载CuO对甲基橙的催化湿式过氧化氢氧化[J].材料导报,2018,32(S2):218-222.
[18] ZHONG Z, LI M, FU J H, et al. Construction of Cu-bridged Cu2O/MIL(Fe/Cu) catalyst with enhanced interfacial contact for the synergistic photo-Fenton degradation of thiacloprid[J]. Chemical Engineering Journal, 2020, 395: 125184. DOI: 10.1016/j.cej.2020.125184.
[19] 焦华,王君龙.CuO微/纳米结构的可控合成与红外性质[J].粉末冶金材料科学与工程,2013,18(5):700-705. DOI:10.3969/j.issn.1673-0224.2013.05.013.
[20] 蔡培新,陈建民,顾为芳.YBa2Cu3O7-δ中Cu—O伸缩振动的红外吸收峰[J].低温物理学报,1993,10(5):345-349.
[21] GEORGE A, MAGIMAI ANTONI RAJ D, DHAYAL RAJ A, et al. Morphologically tailored CuO nanostructures toward visible-light-driven photocatalysis[J]. Materials Letters, 2020, 281: 128603. DOI: 10.1016/j.matlet.2020.128603.
[22] BIESINGER M C, PAYNE B P, GROSVENOR A P, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni[J]. Applied Surface Science, 2011, 257(7): 2717-2730. DOI: 10.1016/j.apsusc.2010.10.051.
[23] ARONNIEMI M, SAINIO J, LAHTINEN J. Chemical state quantification of iron and chromium oxides using XPS: the effect of the background subtraction method[J]. Surface Science, 2005, 578(1/3): 108-123. DOI: 10.1016/j.susc.2005.01.019.
[24] YAO Y J, LU F, ZHU Y P, et al. Magnetic core-shell CuFe2O4@C3N4 hybrids for visible light photocatalysis of Orange II[J]. Journal of Hazardous Materials, 2015, 297: 224-233. DOI: 10.1016/j.jhazmat.2015.04.046.
[25] WANG J, FAN D Q, YU T, et al. Improvement of low-temperature hydrothermal stability of Cu/SAPO-34 catalysts by Cu2+ species[J]. Journal of Catalysis, 2015, 322: 84-90. DOI: 10.1016/j.jcat.2014.11.010.
[26] LIU J, CUI J N, ZHAO T Y, et al. Fe3O4-CeO2 loaded on modified activated carbon as efficient heterogeneous catalyst[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 565: 59-69. DOI: 10.1016/j.colsurfa.2018.12.052.
[27] 张丹薇.铜铈二元混合氧化物催化过硫酸氢钾降解苯酚研究[D].哈尔滨:哈尔滨工业大学,2013. DOI:10.7666/d.D594691.
[28] NIU H Y, ZHENG Y, WANG S H, et al. Continuous generation of hydroxyl radicals for highly efficient elimination of chlorophenols and phenols catalyzed by heterogeneous Fenton-like catalysts yolk/shell Pd@Fe3O4@metal organic frameworks[J]. Journal of Hazardous Materials, 2018, 346: 174-183. DOI: 10.1016/j.jhazmat.2017.12.027.
[29] LUO M Y, LI M F, JIANG S, et al. Supported growth of inorganic-organic nanoflowers on 3D hierarchically porous nanofibrous membrane for enhanced enzymatic water treatment[J]. Journal of Hazardous Materials, 2020, 381: 120947. DOI: 10.1016/j.jhazmat.2019.120947.
[30] 方嘉声,于光认,陈晓春,等.石墨烯掺杂分子筛负载氧化铁芬顿催化降解苯酚影响因素的研究[J].环境科学学报,2015,35(11):3529-3537. DOI:10.13671/j.hjkxxb.2014.1069.
[31] 封立伟.Fe/AC非均相Fenton体系降解废水中苯酚研究[J].工业用水与废水,2019,50(3):26-29. DOI:10.3969/j.issn.1009-2455.2019.03.006.
[1] 曾明华, 李丹丹, 殷政, 王强心, 张东材. 刚性柱双π墙金属有机框架:单晶到单晶结构转换,碘富集与缓释,协同导电性研究[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 171-177.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈宁,何明先,李钰慧,陈洁萍,李诗林,马姜明. 应用正交设计法优选红背山麻杆扦插繁殖方法[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 128 -133 .
[2] 徐勤, 马超美, 饶伟文, 邓立东. UPLC-QQQMS测定咳特灵中小叶榕干浸膏12种成分[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 80 -86 .
[3] 吴竹, 田漫漫, 谭琪明, 陈震, 王秋萍, 何珺. HPLC-RID测定银蓝通络口服液中银杏内酯含量[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 87 -92 .
[4] 胡郁葱, 陈栩, 罗嘉陵. 多起终点多车型混载的定制公交线路规划模型[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 1 -11 .
[5] 罗娆珊, 沈艳玲, 孙立元. L-苏氨酸镁对多巴胺神经元的保护作用及其机制[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 124 -130 .
[6] 陈美红, 杨翠红, 李传起. 人造地球卫星对地球自转的影响[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 6 -9 .
[7] 程瑞, 何明先, 钟春英, 罗树毅, 武正军. 野生与人工繁育鳄蜥游泳能力比较[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 79 -86 .
[8] 吴玲玉, 蓝洋, 夏海英. 基于卷积神经网络的眼底图像配准研究[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 122 -133 .
[9] 蒋向辉, 谭荣, 杨永平, 肖清淙. 十大功劳甘草汤治疗肝炎的网络药理学研究[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 198 -209 .
[10] 侯欠欠, 方志刚, 秦渝, 朱依文. 团簇Fe4P的成键及极化率探究[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 140 -146 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发