|
广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (1): 58-66.doi: 10.16088/j.issn.1001-6600.2022030903
赵中华, 晏晓锋, 童有为*
ZHAO Zhonghua, YAN Xiaofeng, TONG Youwei*
摘要: 电池荷电状态(SOC)的准确估计对于电动汽车动力电池的管理至关重要,而电动汽车在实际运行时经常会遇到SOC数据突变的问题,同时所建立的电池模型和噪声模型也存在一定误差,这导致传统扩展卡尔曼滤波算法在SOC估算过程中自适应性和鲁棒性较差。针对这些问题,本文提出使用自适应渐消扩展卡尔曼滤波算法(AFEKF),应用于锂离子电池的SOC估计。引入渐消因子对系统噪声协方差进行自适应迭代,从而实时更新最优卡尔曼增益,减少数据突变和电池模型误差等因素带来的影响,通过在复杂工况下的实验对比可知,AFEKF相比于标准EKF(extended Kalman filter),新欧洲驾驶循环工况下SOC估算精度提高0.78个百分点,变电流工况下估算精度提高0.5个百分点,同时在电池SOC初始值不准确的情况下能更快更平稳地收敛到真实值,表明AFEKF算法相比EKF估算SOC具有更高的估算精度和更好的鲁棒性。
中图分类号:
[1] 吴春芳. 动力电池SOC估算综述[J]. 电源技术,2017,41(12):1795-1798. [2]徐尖峰,张颖,甄玉,等. 基于安时积分法的电池SOC估算[J]. 汽车实用技术,2018(18):9-11,23.DOI:10.16638/j.cnki.1671-7988.2018.18.004. [3]HU Y H, WANG Z P. Study on SOC estimation of lithium battery based on improved BP neural network[C]// 2019 8th International Symposium on Next Generation Electronics(ISNE). Piscataway, NJ: IEEE, 2019:1-3. DOI:10.1109/ISNE.2019.8896605. [4]PLETT G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: part 3. state and parameter estimation[J]. Journal of Power Sources, 2004, 134(2):277-292. DOI:10.1016/j.jpowsour.2004.02.033. [5]高文敬,高松,侯恩广. 基于滑模变结构的卡尔曼滤波对电池SOC的估算[J]. 广西大学学报(自然科学版),2017,42(6):2067-2073.DOI:10.13624/j.cnki.issn.1001-7445.2017.2067. [6]方磊,陈勇,赵理,等. 基于模糊控制的扩展卡尔曼滤波SOC估计研究[J].系统仿真学报,2018,30(1):325-331. DOI:10.16182/j.issn1004731x.joss.201801043. [7]WANG L M,LU D,LIU Q,et al. State of charge estimation for LiFePO4 battery via dual extended kalman filter and charging voltage curve[J]. Electrochimica Acta,2019,296:1009-1017. DOI:10.1016/j.electacta.2018.11.156. [8]孙立珍,刘广忱,田桂珍,等. 基于近似二阶EKF的锂离子电池SOC估算[J]. 电池,2019,49(5):387-391. DOI:10.19535/j.1001-1579.2019.05.006. [9]王文亮,何锋,郑永樑,等. 基于RLS-EKF联合算法的锂电池SOC估算[J]. 电源技术,2020,44(10):1498-1501,1505. DOI:10.3969/j.issn.1002-087X.2020.10.024. [10]李军,张俊,张世义. 基于ABP-EKF算法的锂电池SOC估计[J]. 重庆交通大学学报(自然科学版),2021,40(3):135-140. DOI:10.3969/j.issn.1674-0696.2021.03.21. [11]RAHMAN M A,ANWAR S,IZADIAN A. Electrochemical model-based condition monitoring via experimentally identifiedli-ion battery model and HPPC[J]. Energies,2017,10(9):1266. DOI:10.3390/en10091266. [12]杨文天,李征. 关于锂电池Thevenin模型的仿真研究[J]. 仪表技术,2017(10):40-43. [13]王党树,王新霞. 基于扩展卡尔曼滤波的锂电池SOC估算[J]. 电源技术,2019,43(9):1458-1460. DOI:10.3969/j.issn.1002-087X.2019.09.013. [14]邱望彦,李荣冰,刘建业. 基于改进自适应渐消卡尔曼滤波的通用航空GNSS/微惯性组合导航算法研究[J]. 电子测量技术,2020,43(10):95-100. DOI:10.19651/j.cnki.emt.2004119. [15]WANG S Y,CHAO Y,DUAN S K,et al. A modified variational Bayesian noise adaptive Kalman filter[J]. Circuit, Systems, and Signal Processing,2017,36(10) :4260-4277. [16]胡辉,彭雄明,杨德进,等.新的自适应渐消拓展卡尔曼滤波在GPS定位中的应用[J]. 火力与指挥控制,2016,41(3):177-182. DOI:10.3969/j.issn.1002-0640.2016.03.043. [17]徐定杰,贺瑞,沈锋,等. 基于新息协方差的自适应渐消卡尔曼滤波器[J]. 系统工程与电子技术,2011,33(12):2696-2699. DOI:10.3969/j.issn.1001-506X.2011.12.23. [18]HE Q Z,ZHANG W G,LIU X X, et al. Noise rejection and anti-divergence of key sensors in a flight control system based on adaptive fading EKF[C]// 2018 IEEE CSAA Guidance,Navigation and Control Conference(CGNCC). Piscataway, NJ:IEEE,2018:1-6. DOI:10.1109/GNCC42960.2018.9019180. [19]王越,李立伟. 基于扩展卡尔曼滤波器的锂电池SOC估算仿真研究[J]. 计算机与数字工程,2020,48(1):206-211. DOI:10.3969/j.issn.1672-9722.2020.01.039. [20]张远进,吴华伟,叶从进. IFA-EKF的锂电池SOC估算[J]. 储能科学与技术,2020,9(1):117-123. [21]LI J B,YE M,JIAO S J,et al. A novel state estimation approach based on adaptive unscented Kalman filter for electric vehicles[J]. IEEE Access,2020,8:185629-185637. DOI:10.1109/ACCESS.2020.3030260. |
[1] | 李付绍, 徐应仙, 武青青, 邓明森. 固相反应制备Li2FeSiO4/C及嵌/脱锂性能研究[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 154-162. |
[2] | 王瑞, 宋树祥, 夏海英. 融合阻抗模型与扩展卡尔曼滤波的锂离子电池荷电状态估算[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 1-10. |
[3] | 韦振汉, 宋树祥, 夏海英. 基于随机森林的锂离子电池荷电状态估算[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 27-33. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |