|
|
广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (5): 75-90.doi: 10.16088/j.issn.1001-6600.2024061104
曹杰1,2, 江红兵1, 朱旭1,2*
CAO Jie1,2, JIANG Hongbing1, ZHU Xu1,2*
摘要: 针对工业物联网数据采集系统对高时效性和高可靠性的需求,考虑不同优先级流量的共存、资源的稀缺性以及信道的随机性,本文提出一种基于随机混合系统的方法,构建适用于此类网络的时效性表征模型。该模型旨在刻画存在大量优先级各异流量的条件下,数据采集网络的时效性特征,并探讨系统中各耦合参数对信息时效性的影响。研究结果表明,通过优化链路感知策略可有效减少传输错误概率对信息年龄的负面影响。在相同优先级网络环境中,链路的信息年龄随着数据生成速率的增加而逐渐趋向稳定极限值;而在不同优先级的网络中,较高优先级链路通过牺牲其他链路的时效性,提升了自身时效性。随着数据生成速率的增加,系统逐渐呈现退化为单链路模式的趋势。因此,为保障系统的整体时效性,需要通过优化低优先级链路的感知资源分配来确保系统的高效运行。
中图分类号: TN929.5; TP393
| [1] 刘月强, 王婷. 工业4.0时代: 物联网与大数据融合的挑战与机遇[J]. 内蒙古科技与经济, 2024(8): 10-12, 17. [2] YUE Y G, HE P. A comprehensive survey on the reliability of mobile wireless sensor networks: Taxonomy, challenges, and future directions[J]. Information Fusion, 2018, 44: 188-204. DOI: 10.1016/j.inffus.2018.03.005. [3] 王改静.工业物联网:数字经济发展新引擎[N].通信产业报,2023-02-13(017).DOI: 10.28806/n.cnki.ntxcy.2023.000076. [4] 张泉灵, 洪艳萍. 智能工厂综述[J]. 自动化仪表, 2018, 39(8): 1-5. DOI: 10.16086/j.cnki.issn1000-0380.2018020033. [5] ABD-ELMAGID M A, PAPPAS N, DHILLON H S. On the role of age of information in the Internet of Things[J]. IEEE Communications Magazine, 2019, 57(12): 72-77. DOI: 10.1109/MCOM.001.1900041. [6] 曹杰. 短包工业实时系统的性能分析和优化[D]. 哈尔滨: 哈尔滨工业大学, 2022. DOI: 10.27061/d.cnki.ghgdu.2022.000325. [7] XU H S, LIU X, HATCHER W G, et al. Priority-aware reinforcement-learning-based integrated design of networking and control for industrial Internet of Things[J]. IEEE Internet of Things Journal, 2021, 8(6): 4668-4680. DOI: 10.1109/JIOT.2020.3027506. [8] KAUL S, YATES R, GRUTESER M. Real-time status: how often should one update? [C]// 2012 Proceedings IEEE INFOCOM. Piscataway, NJ: IEEE, 2012: 2731-2735. DOI: 10.1109/INFCOM.2012.6195689. [9] 曹雅丽. 工业物联网联合数据获取及传输优化技术研究[D]. 北京: 北京邮电大学, 2022. DOI: 10.26969/d.cnki.gbydu.2022.000725. [10] 宋贤鑫. 基于信息时效性的通信与计算融合策略研究[D]. 北京: 北京邮电大学, 2020. DOI: 10.26969/d.cnki.gbydu.2020.003150. [11] 牛志升. 面向6G网络的高可靠低延时通信计算与控制[J]. 中国科学: 信息科学, 2024, 54(5): 1267-1282. DOI: 10.1360/SSI-2023-0336. [12] FENG Y F, CHEN Z C, WANG M, et al. Modern random access-based IoT networks design: from a timeliness-fidelity perspective[J]. IEEE Communications Magazine, 2024, 62(7): 74-80. DOI: 10.1109/MCOM.001.2300785. [13] KAUL S, GRUTESER M, RAI V, et al. Minimizing age of information in vehicular networks[C]// 2011 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks. Piscataway, NJ: IEEE, 2011: 350-358. DOI: 10.1109/SAHCN.2011.5984917. [14] KAUL S K, YATES R D, GRUTESER M. Status updates through queues[C]// 2012 46th Annual Conference on Information Sciences and Systems (CISS). Piscataway, NJ: IEEE, 2012: 1-6. DOI: 10.1109/CISS.2012.6310931. [15] KOSTA A, PAPPAS N, EPHREMIDES A, et al. The age of information in a discrete time queue: stationary distribution and non-linear age mean analysis[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(5): 1352-1364. DOI: 10.1109/JSAC.2021.3065045. [16] SOYSAL A, ULUKUS S. Age of information in G/G/1/1 systems: age expressions, bounds, special cases, and optimization[J]. IEEE Transactions on Information Theory, 2021, 67(11): 7477-7489. DOI: 10.1109/TIT.2021.3095823. [17] SUN Y, UYSAL-BIYIKOGLU E, YATES R D, et al. Update or wait: how to keep your data fresh[J]. IEEE Transactions on Information Theory, 2017, 63(11): 7492-7508. DOI: 10.1109/TIT.2017.2735804. [18] COSTA M, CODREANU M, EPHREMIDES A. On the age of information in status update systems with packet management[J]. IEEE Transactions on Information Theory, 2016, 62(4): 1897-1910. DOI: 10.1109/TIT.2016.2533395. [19] CHEN K, HUANG L B. Age-of-information in the presence of error[C]// 2016 IEEE International Symposium on Information Theory (ISIT). Piscataway, NJ: IEEE, 2016: 2579-2583. DOI: 10.1109/ISIT.2016.7541765. [20] YATES R D, KAUL S K. The age of information: real-time status updating by multiple sources[J]. IEEE Transactions on Information Theory, 2019, 65(3): 1807-1827. DOI: 10.1109/TIT.2018.2871079. [21] 中国信息通信研究院(工业和信息化部电信研究院). 物联网安全白皮书[R/OL]. (2018-09)[2024-05-29]. http://www.caict.ac.cn/kxyj/qwfb/bps/201809/P020180919390470911802.pdf. [22] YU B Q, CHEN X M, CAI Y M. Age of information for the cellular Internet of Things: challenges, key techniques, and future trends[J]. IEEE Communications Magazine, 2022, 60(12): 20-26. DOI: 10.1109/MCOM.008.2200148. [23] XIA C Q, JIN X, XU C, et al. Real-time scheduling under heterogeneous routing for industrial Internet of Things[J]. Computers & Electrical Engineering, 2020, 86: 106740. DOI: 10.1016/j.compeleceng.2020.106740. [24] HUANG J, YU T, YANG F, et al. AoI-aware resource allocation with interference avoidance for ultradense industrial Internet of Things networks[J]. IEEE Internet of Things Journal, 2024, 11(17): 28787-28797. DOI: 10.1109/JIOT.2024.3403849. [25] SERDAROGLU K C, BAYDERE S. An efficient multipriority data packet traffic scheduling approach for fog of things[J]. IEEE Internet of Things Journal, 2022, 9(1): 525-534. DOI: 10.1109/JIOT.2021.3084502. [26] DEWA G R R, PARK C, SOHN I. Priority-aware scheduling for high-dense healthcare IoT (H-IoT) networks using message-passing algorithm[J]. IEEE Internet of Things Journal, 2024, 11(12): 21604-21619. DOI: 10.1109/JIOT.2024.3375322. [27] KAUL S K, YATES R D. Age of information: updates with priority[C]// 2018 IEEE International Symposium on Information Theory (ISIT). Piscataway, NJ: IEEE, 2018: 2644-2648. DOI: 10.1109/ISIT.2018.8437591. [28] DONCEL J, ASSAAD M. Age of information in a decentralized network of parallel queues with routing and packets losses[J]. Journal of Communications and Networks, 2022, 24(1): 17-20. DOI: 10.23919/JCN.2020.000036. [29] YATES R D. The age of information in networks: moments, distributions, and sampling[J]. IEEE Transactions on Information Theory, 2020, 66(9): 5712-5728. DOI: 10.1109/TIT.2020.2998100. [30] BAI G M, QU L, LIU J, et al. AoI-aware joint scheduling and power allocation in intelligent transportation system: a deep reinforcement learning approach[J]. IEEE Transactions on Vehicular Technology, 2024, 73(4): 5781-5795. DOI: 10.1109/TVT.2023.3333825. [31] TANG J H, CHEN F F, LI J P, et al. Learn to schedule: data freshness-oriented intelligent scheduling in industrial IoT[J]. IEEE Transactions on Cognitive Communications and Networking, 2025,11(1): 505-518. DOI: 10.1109/TCCN.2024.3445342. [32] CHEN F F, TANG J H, YIN Z H. Age of loop information with flexible transmission enabled communication and control co-design in industrial IoT[J]. China Communications, 2024, 21(11): 40-55. DOI: 10.23919/JCC.fa.2024-0218.202411. [33] LI J P, TANG J H, LIU Z L. On the data freshness for industrial Internet of things with mobile-edge computing[J]. IEEE Internet of things Journal, 2022, 9(15): 13542-13554. DOI: 10.1109/JIOT.2022.3143250. [34] HESPANHA J P. Stochastic hybrid systems: application to communication networks[M]// Hybrid Systems: Computation and Control. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004: 387-401. DOI: 10.1007/978-3-540-24743-2_26. |
| [1] | 刘玉媛,曾上游. LTE同步技术频偏估计理论研究[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 32-37. |
| [2] | 贺冬冬, 李传起. 一种改进的基于FFT/IFFT预留子载波的PAPR抑制算法[J]. 广西师范大学学报(自然科学版), 2014, 32(3): 6-11. |
| [3] | 宋婷, 谢显中, 胡小峰. 分簇频谱检测报告信道的信噪比墙及性能分析[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 169-176. |
| [4] | 杜洋, 郑霖, 刘争红, 宾辰忠. 高效平坦Rice信道模拟器[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 31-36. |
| [5] | 万火, 谢显中, 马彬, 高川. 基于历史信息的局部最大权独立集感知无线电频谱分配算法[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 36-41. |
| [6] | 杨海, 谢亚琴. 基于Floyd算法的5G基站区域储能分配策略[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 41-54. |
| [7] | 王昭然, 谢显中, 赵鼎新. 车载通信网中基于跨层的TCP拥塞控制机制[J]. 广西师范大学学报(自然科学版), 2011, 29(4): 49-55. |
|
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |