广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (5): 114-129.doi: 10.16088/j.issn.1001-6600.2024110101

• 智能信息处理 • 上一篇    下一篇

基于改进YOLOv8s的人脸痤疮小目标检测

刘廷汉1, 梁艳1, 黄鹏升2,3, 闭金杰1, 黄守麟1*, 李廷会1   

  1. 1.广西师范大学 电子与信息工程学院, 广西 桂林 541004;
    2.广西师范大学 计算机科学与工程学院, 广西 桂林 541004;
    3.北京美医医学技术研究院有限公司, 北京 100085
  • 收稿日期:2024-11-01 修回日期:2025-03-06 出版日期:2025-09-05 发布日期:2025-08-05
  • 通讯作者: 黄守麟(1982—), 男, 广西宾阳人, 广西师范大学副教授, 博士。E-mail: hsl5167@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(62466006); 广西科技计划青年创新人才科研专项(桂科AD23026245)

Facial Acne Detection for Small Object Based on Improved YOLOv8s

LIU Tinghan1, LIANG Yan1, HUANG Pengsheng2,3, BI Jinjie1, HUANG Shoulin1*, LI Tinghui1   

  1. 1. School of Electronic and Information Engineering, Guangxi Normal University, Guilin Guangxi 541004, China;
    2. School of Computer Science and Engineering, Guangxi Normal University, Guilin Guangxi 541004, China;
    3. Beijing Meiyi Institute of Medical Technology Co., Ltd., Beijing 100085, China
  • Received:2024-11-01 Revised:2025-03-06 Online:2025-09-05 Published:2025-08-05

摘要: 人脸痤疮的自动检测是实现痤疮精准诊疗的关键,而现有方法仍然存在严重的痤疮小目标漏检和误检问题。为实现更准确的痤疮检测,本文提出一种改进的YOLOv8s算法。首先,将YOLOv8s的主干网络改进为一种与Transformer融合的混合主干网络,兼顾卷积神经网络捕获局部细节信息和Transformer维持全局特征信息的优点,显著提高小痤疮目标的特征提取和表征能力。其次,改进YOLOv8s颈部网络的特征融合方式,通过增加多尺度通道注意力模块聚合多尺度上下文信息,以调整各尺度特征权重,缓解特征内容的语义与尺度不一致问题。在公开和自建的人脸痤疮数据集上的实验表明,相比当前最优的痤疮检测算法DSDH,本文方法在检测精度mAP上分别提高1.20和5.24个百分点,检测速度分别提高46.3和47.6 frame/s。

关键词: 人脸痤疮, YOLOv8s, 小目标检测, Transformer, 多尺度特征融合

Abstract: Automated facial acne detection is crucial for precise clinical diagnosis and treatment. However, existing methods still suffer from significant issues of missed detection and false detection of small acne targets. For more accurate acne detection, an enhanced YOLOv8s method with two key modifications is proposed in this paper. Firstly, the original backbone network of YOLOv8s is improved into a hybrid backbone network that integrates with Transformer. This improvement effectively combines the advantages of convolutional neural network capturing local detail information and Transformers maintaining global feature information, significantly enhancing the feature extraction and representation capabilities for small acne objects. Secondly, a multi-scale channel attention module is integrated into the neck network, enabling adaptive feature weight adjustment through cross-scale context aggregation, thereby mitigating semantic-scale inconsistency. Experiments on both public and self-built facial acne datasets demonstrate that, compared with the current state-of-the-art DSDH method, the proposed method achieves mAP improvements of 1.20% and 5.24% on respective datasets, with corresponding detection speed increases of 46.3 and 47.6 frame/s.

Key words: facial acne, YOLOv8s, small object detection, Transformer, multi-scale feature fusion

中图分类号:  TP391.41

[1] ZAENGLEIN A L. Acne vulgaris[J]. The New England Journal of Medicine, 2018, 379(14): 1343-1352. DOI: 10.1056/NEJMcp1702493.
[2] 张瓅丹, 徐济达, 何源. 中学生和大学生痤疮患者焦虑与抑郁状况[J]. 中国学校卫生, 2020, 41(4): 531-534. DOI: 10.16835/j.cnki.1000-9817.2020.04.014.
[3] 杜耀武, 寇鹏涛. 青春期痤疮患者抑郁状况的观察[J]. 国际精神病学杂志, 2019, 46(6): 1092-1094. DOI: 10.13479/j.cnki.jip.2019.06.040.
[4] 鞠强. 中国痤疮治疗指南(2019修订版)[J]. 临床皮肤科杂志, 2019, 48(9): 583-588. DOI: 10.16761/j.cnki.1000-4963.2019.09.020.
[5] 陈名华, 刘本, 蓝雨, 等. AI计算机辅助对1013例痤疮患者面部皮损识别及分级检测[J]. 皮肤病与性病, 2024, 46(1): 44-47. DOI: 10.3969/j.issn.1002-1310.2024.01.011.
[6] HENG A H S, CHEW F T. Systematic review of the epidemiology of acne vulgaris[J]. ScientificReports, 2020, 10(1): 5754. DOI: 10.1038/s41598-020-62715-3.
[7] CHANTHARAPHAICHI T, UYYANONVARA B, SINTHANAYOTHIN C, et al. Automatic acne detection for medical treatment[C]// 2015 6th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES). Piscataway, NJ: IEEE, 2015: 1-6. DOI: 10.1109/ICTEmSys.2015.7110813.
[8] KITTIGUL N, UYYANONVARA B. Automatic acne detection system for medical treatment progress report[C]// 2016 7th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES). Piscataway, NJ: IEEE, 2016: 41-44. DOI: 10.1109/ICTEmSys.2016.7467119.
[9] MARONI G, ERMIDORO M, PREVIDI F, et al. Automated detection, extraction and counting of acne lesions for automatic evaluation and tracking of acne severity[C]// 2017 IEEE Symposium Series on Computational Intelligence (SSCI). Piscataway, NJ: IEEE, 2017: 1-6. DOI: 10.1109/SSCI.2017.8280925.
[10] WU X P, WEN N, LIANG J, et al. Joint acne image grading and counting via label distribution learning[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2019: 10641-10650. DOI: 10.1109/ICCV.2019.01074.
[11] MIN K, LEE G H, LEE S W.ACNet: mask-aware attention with dynamic context enhancement for robust acne detection[C]// 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Piscataway, NJ: IEEE, 2021: 2724-2729. DOI: 10.1109/SMC52423.2021.9659243.
[12] ZHANG J W, ZHANG L, WANG J Y, et al. SA-RPN: a spacial aware region proposal network for acne detection[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(11): 5439-5448. DOI: 10.1109/JBHI.2023.3304727.
[13] WEI X, ZHANG L, ZHANG J W, et al. Decoupled sequential detection head for accurate acne detection[J]. Knowledge-Based Systems, 2024, 284: 111305. DOI: 10.1016/j.knosys.2023.111305.
[14] LIU Y, SUN P, WERGELES N, et al. A survey and performance evaluation of deep learning methods for small object detection[J]. Expert Systems with Applications, 2021, 172: 114602. DOI: 10.1016/j.eswa.2021.114602.
[15] CHENG G, YUAN X, YAO X W, et al. Towards large-scale small object detection: survey and benchmarks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 13467-13488. DOI: 10.1109/TPAMI.2023.
3290594.
[16] 潘晓英, 贾凝心, 穆元震, 等. 小目标检测研究综述[J]. 中国图象图形学报, 2023, 28(9): 2587-2615. DOI: 10.11834/jig.220455.
[17] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Advances in Neural Information Processing Systems 30 (NIPS 2017). Red Hook, NY: Curran Associates Inc., 2017: 6000-6010.
[18] DAI Y M, GIESEKE F, OEHMCKE S, et al. Attentional feature fusion[C]// 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). Los Alamitos, CA: IEEE Computer Society, 2021: 3559-3568. DOI: 10.1109/WACV48630.2021.00360.
[19] GONG H, MU T K, LI Q X, et al. Swin-transformer-enabled YOLOv5 with attention mechanism for small object detection on satellite images[J]. Remote Sensing, 2022, 14(12): 2861. DOI: 10.3390/rs14122861.
[20] DUBEY S, OLIMOV F, RAFIQUE M A, et al. Improving small objects detection using transformer[J]. Journal of Visual Communication and Image Representation, 2022, 89: 103620. DOI: 10.1016/j.jvcir.2022.103620.
[21] 徐守坤, 顾佳楠, 庄丽华, 等. 基于两阶段计算Transformer的小目标检测[J]. 计算机科学与探索, 2023, 17(12): 2967-2983. DOI: 10.3778/j.issn.1673-9418.2210120.
[22] 孔祥苏, 左付超, 赵新赢, 等. 基于视觉Transformer的地铁安全门间隙异物检测算法研究[J]. 自动化应用, 2025, 66(2): 29-31. DOI: 10.19769/j.zdhy.2025.02.008.
[23] PENG Z L, HUANG W, GU S Z, et al. Conformer: local features coupling global representations for visual recognition[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2021: 357-366. DOI: 10.1109/ICCV48922.2021.00042.
[24] PENG Z L, GUO Z H, HUANG W, et al. Conformer: local features coupling global representations for recognition and detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 9454-9468. DOI: 10.1109/TPAMI.2023.3243048.
[25] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2017: 936-944. DOI: 10.1109/CVPR.2017.106.
[26] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2018: 8759-8768. DOI: 10.1109/CVPR.2018.00913.
[27] KATO S, HOTTA K, HATAKEYAMA Y, et al. Lite-HRNet Plus:fast and accurate facial landmark detection[C]// 2023 IEEE International Conference on Image Processing (ICIP). Piscataway, NJ: IEEE, 2023: 1500-1504. DOI: 10.1109/ICIP49359.2023.10221969.
[28] CHEN J, MAI H S, LUO L B, et al. Effective feature fusion network in BIFPN for small object detection[C]// 2021 IEEE International Conference on Image Processing (ICIP). Piscataway, NJ: IEEE, 2021: 699-703. DOI: 10.1109/ICIP42928.2021.9506347.
[29] 陈志旺, 李宗轩, 吕昌昊, 等. 基于HRNet和ASFF的特征融合目标检测算法[J]. 控制与决策, 2024, 39(10): 3207-3215. DOI: 10.13195/j.kzyjc.2023.0852.
[30] HUSSAIN M. YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection[J]. Machines, 2023, 11(7): 677. DOI: 10.3390/machines11070677.
[31] 文思予, 张上, 张朝阳, 等. 基于改进YOLOv8s的多尺度检测算法[J]. 现代电子技术, 2024, 47(15): 133-138. DOI: 10.16652/j.issn.1004-373x.2024.15.022.
[32] 曲晨阳, 吕进, 卫策. 基于改进YOLOv8s的无人机目标检测算法[J]. 国外电子测量技术,2024,43(7): 14-23. DOI: 10.19652/j.cnki.femt.2406082.
[33] SUNDARESAN GEETHA A, ALIF M A R, HUSSAIN M, et al. Comparative analysis of YOLOv8 and YOLOv10 in vehicle detection: performance metrics and model efficacy[J]. Vehicles, 2024, 6(3): 1364-1382. DOI: 10.3390/vehicles6030065.
[34] 罗伟, 解威威, 侯凯文, 等. 基于YOLOv8s的道路坑洼检测技术研究[J]. 西部交通科技, 2024(11): 28-30. DOI: 10.13282/j.cnki.wccst.2024.11.009.
[35] XIE E Z, WANG W H, YU Z D, et al. SegFormer: simple and efficient design for semantic segmentation with transformers[C]// Advances in Neural Information Processing Systems 34 (NeurIPS 2021). Red Hook, NY: Curran Associates Inc., 2021: 12077-12090.
[36] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2021: 13708-13717. DOI: 10.1109/CVPR46437.2021.01350.
[37] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. DOI: 10.1109/TPAMI.2016.2577031.
[38] CAI Z W, VASCONCELOS N. Cascade R-CNN: high quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5): 1483-1498. DOI: 10.1109/TPAMI.2019.2956516.
[39] LAW H, DENG J. CornerNet: detecting objects as paired keypoints[C]// Computer Vision-ECCV 2018 (LNIP Volume 11218). Cham: Springer, 2018: 765-781. DOI: 10.1007/978-3-030-01264-9_45.
[40] DUAN K W, BAI S, XIE L X, et al. CenterNet: keypoint triplets for object detection[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2019: 6568-6577. DOI: 10.1109/ICCV.2019.00667.
[41] TIAN Z, SHEN C H, CHEN H, et al. FCOS: a simple and strong anchor-free object detector[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 1922-1933. DOI: 10.1109/TPAMI.2020.3032166.
[42] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2023: 7464-7475. DOI: 10.1109/CVPR52729.2023.00721.
[43] MUHAMMAD M B, YEASIN M. Eigen-CAM: class activation map using principal components[C]// 2020 International Joint Conference on Neural Networks (IJCNN). Piscataway, NJ: IEEE, 2020: 1-7. DOI: 10.1109/IJCNN48605.2020.
9206626.
[44] BOLYA D, FOLEY S, HAYS J, et al.TIDE: a general toolbox for identifying object detection errors[C]// Computer Vision-ECCV 2020 (LNIP Volume 12348). Cham: Springer, 2020: 558-573. DOI: 10.1007/978-3-030-58580-8_33.
[1] 易见兵, 张裕贤, 曹锋, 李俊, 彭鑫, 陈鑫. 基于时空注意力的3D人体姿态估计网络设计[J]. 广西师范大学学报(自然科学版), 2025, 43(5): 130-144.
[2] 韩烁, 江林峰, 杨建斌. 基于注意力机制PINNs方法求解圣维南方程[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 58-68.
[3] 王旭阳, 章家瑜. 基于跨模态增强网络的时序多模态情感分析[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 97-107.
[4] 赵伟, 田帅, 张强, 王耀申, 王思博, 宋江. 基于改进YOLOv5的平贝母检测模型[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 22-32.
[5] 孙旭, 沈彬, 严馨, 张金鹏, 徐广义. 基于Transformer和TextRank的微博观点摘要方法[J]. 广西师范大学学报(自然科学版), 2023, 41(4): 96-108.
[6] 黄叶祺, 王明伟, 闫瑞, 雷涛. 基于改进的YOLOv5金刚石线表面质量检测[J]. 广西师范大学学报(自然科学版), 2023, 41(4): 123-134.
[7] 陈文康, 陆声链, 刘冰浩, 李帼, 刘晓宇, 陈明. 基于改进YOLOv4的果园柑橘检测方法研究[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 134-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 钟俏, 陈生龙, 唐聪聪. 水凝胶技术在微藻采收中的应用:现状、挑战与发展分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 16 -29 .
[2] 施慧露, 莫燕华, 骆海玉, 马姜明. 檵木乙酸乙酯萃取物抑菌活性研究[J]. 广西师范大学学报(自然科学版), 2025, 43(1): 1 -8 .
[3] 贺青, 李栋, 罗思源, 贺寓东, 李彪, 王强. 超宽带里德堡原子天线技术研究进展[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 1 -19 .
[4] 黄仁慧, 张锐锋, 文晓浩, 闭金杰, 黄守麟, 李廷会. 基于复数协方差卷积神经网络的运动想象脑电信号解码方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 43 -56 .
[5] 田晟, 熊辰崟, 龙安洋. 基于改进PointNet++的城市道路点云分类方法[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 1 -14 .
[6] 黎宗孝, 张健, 罗鑫悦, 赵嶷飞, 卢飞. 基于K-means和Adam-LSTM的机场进场航迹预测研究[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 15 -23 .
[7] 宋铭楷, 朱成杰. 基于H-WOA-GWO和区段修正策略的配电网故障定位研究[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 24 -37 .
[8] 韩烁, 江林峰, 杨建斌. 基于注意力机制PINNs方法求解圣维南方程[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 58 -68 .
[9] 李志欣, 匡文兰. 结合互注意力空间自适应和特征对集成判别的细粒度图像分类[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 69 -82 .
[10] 石天怡, 南新元, 郭翔羽, 赵濮, 蔡鑫. 基于改进ConvNeXt的苹果叶片病害分类算法[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 83 -96 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发