|
|
广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (5): 114-129.doi: 10.16088/j.issn.1001-6600.2024110101
刘廷汉1, 梁艳1, 黄鹏升2,3, 闭金杰1, 黄守麟1*, 李廷会1
LIU Tinghan1, LIANG Yan1, HUANG Pengsheng2,3, BI Jinjie1, HUANG Shoulin1*, LI Tinghui1
摘要: 人脸痤疮的自动检测是实现痤疮精准诊疗的关键,而现有方法仍然存在严重的痤疮小目标漏检和误检问题。为实现更准确的痤疮检测,本文提出一种改进的YOLOv8s算法。首先,将YOLOv8s的主干网络改进为一种与Transformer融合的混合主干网络,兼顾卷积神经网络捕获局部细节信息和Transformer维持全局特征信息的优点,显著提高小痤疮目标的特征提取和表征能力。其次,改进YOLOv8s颈部网络的特征融合方式,通过增加多尺度通道注意力模块聚合多尺度上下文信息,以调整各尺度特征权重,缓解特征内容的语义与尺度不一致问题。在公开和自建的人脸痤疮数据集上的实验表明,相比当前最优的痤疮检测算法DSDH,本文方法在检测精度mAP上分别提高1.20和5.24个百分点,检测速度分别提高46.3和47.6 frame/s。
中图分类号: TP391.41
| [1] ZAENGLEIN A L. Acne vulgaris[J]. The New England Journal of Medicine, 2018, 379(14): 1343-1352. DOI: 10.1056/NEJMcp1702493. [2] 张瓅丹, 徐济达, 何源. 中学生和大学生痤疮患者焦虑与抑郁状况[J]. 中国学校卫生, 2020, 41(4): 531-534. DOI: 10.16835/j.cnki.1000-9817.2020.04.014. [3] 杜耀武, 寇鹏涛. 青春期痤疮患者抑郁状况的观察[J]. 国际精神病学杂志, 2019, 46(6): 1092-1094. DOI: 10.13479/j.cnki.jip.2019.06.040. [4] 鞠强. 中国痤疮治疗指南(2019修订版)[J]. 临床皮肤科杂志, 2019, 48(9): 583-588. DOI: 10.16761/j.cnki.1000-4963.2019.09.020. [5] 陈名华, 刘本, 蓝雨, 等. AI计算机辅助对1013例痤疮患者面部皮损识别及分级检测[J]. 皮肤病与性病, 2024, 46(1): 44-47. DOI: 10.3969/j.issn.1002-1310.2024.01.011. [6] HENG A H S, CHEW F T. Systematic review of the epidemiology of acne vulgaris[J]. ScientificReports, 2020, 10(1): 5754. DOI: 10.1038/s41598-020-62715-3. [7] CHANTHARAPHAICHI T, UYYANONVARA B, SINTHANAYOTHIN C, et al. Automatic acne detection for medical treatment[C]// 2015 6th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES). Piscataway, NJ: IEEE, 2015: 1-6. DOI: 10.1109/ICTEmSys.2015.7110813. [8] KITTIGUL N, UYYANONVARA B. Automatic acne detection system for medical treatment progress report[C]// 2016 7th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES). Piscataway, NJ: IEEE, 2016: 41-44. DOI: 10.1109/ICTEmSys.2016.7467119. [9] MARONI G, ERMIDORO M, PREVIDI F, et al. Automated detection, extraction and counting of acne lesions for automatic evaluation and tracking of acne severity[C]// 2017 IEEE Symposium Series on Computational Intelligence (SSCI). Piscataway, NJ: IEEE, 2017: 1-6. DOI: 10.1109/SSCI.2017.8280925. [10] WU X P, WEN N, LIANG J, et al. Joint acne image grading and counting via label distribution learning[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2019: 10641-10650. DOI: 10.1109/ICCV.2019.01074. [11] MIN K, LEE G H, LEE S W.ACNet: mask-aware attention with dynamic context enhancement for robust acne detection[C]// 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Piscataway, NJ: IEEE, 2021: 2724-2729. DOI: 10.1109/SMC52423.2021.9659243. [12] ZHANG J W, ZHANG L, WANG J Y, et al. SA-RPN: a spacial aware region proposal network for acne detection[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(11): 5439-5448. DOI: 10.1109/JBHI.2023.3304727. [13] WEI X, ZHANG L, ZHANG J W, et al. Decoupled sequential detection head for accurate acne detection[J]. Knowledge-Based Systems, 2024, 284: 111305. DOI: 10.1016/j.knosys.2023.111305. [14] LIU Y, SUN P, WERGELES N, et al. A survey and performance evaluation of deep learning methods for small object detection[J]. Expert Systems with Applications, 2021, 172: 114602. DOI: 10.1016/j.eswa.2021.114602. [15] CHENG G, YUAN X, YAO X W, et al. Towards large-scale small object detection: survey and benchmarks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 13467-13488. DOI: 10.1109/TPAMI.2023. 3290594. [16] 潘晓英, 贾凝心, 穆元震, 等. 小目标检测研究综述[J]. 中国图象图形学报, 2023, 28(9): 2587-2615. DOI: 10.11834/jig.220455. [17] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Advances in Neural Information Processing Systems 30 (NIPS 2017). Red Hook, NY: Curran Associates Inc., 2017: 6000-6010. [18] DAI Y M, GIESEKE F, OEHMCKE S, et al. Attentional feature fusion[C]// 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). Los Alamitos, CA: IEEE Computer Society, 2021: 3559-3568. DOI: 10.1109/WACV48630.2021.00360. [19] GONG H, MU T K, LI Q X, et al. Swin-transformer-enabled YOLOv5 with attention mechanism for small object detection on satellite images[J]. Remote Sensing, 2022, 14(12): 2861. DOI: 10.3390/rs14122861. [20] DUBEY S, OLIMOV F, RAFIQUE M A, et al. Improving small objects detection using transformer[J]. Journal of Visual Communication and Image Representation, 2022, 89: 103620. DOI: 10.1016/j.jvcir.2022.103620. [21] 徐守坤, 顾佳楠, 庄丽华, 等. 基于两阶段计算Transformer的小目标检测[J]. 计算机科学与探索, 2023, 17(12): 2967-2983. DOI: 10.3778/j.issn.1673-9418.2210120. [22] 孔祥苏, 左付超, 赵新赢, 等. 基于视觉Transformer的地铁安全门间隙异物检测算法研究[J]. 自动化应用, 2025, 66(2): 29-31. DOI: 10.19769/j.zdhy.2025.02.008. [23] PENG Z L, HUANG W, GU S Z, et al. Conformer: local features coupling global representations for visual recognition[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2021: 357-366. DOI: 10.1109/ICCV48922.2021.00042. [24] PENG Z L, GUO Z H, HUANG W, et al. Conformer: local features coupling global representations for recognition and detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 9454-9468. DOI: 10.1109/TPAMI.2023.3243048. [25] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2017: 936-944. DOI: 10.1109/CVPR.2017.106. [26] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2018: 8759-8768. DOI: 10.1109/CVPR.2018.00913. [27] KATO S, HOTTA K, HATAKEYAMA Y, et al. Lite-HRNet Plus:fast and accurate facial landmark detection[C]// 2023 IEEE International Conference on Image Processing (ICIP). Piscataway, NJ: IEEE, 2023: 1500-1504. DOI: 10.1109/ICIP49359.2023.10221969. [28] CHEN J, MAI H S, LUO L B, et al. Effective feature fusion network in BIFPN for small object detection[C]// 2021 IEEE International Conference on Image Processing (ICIP). Piscataway, NJ: IEEE, 2021: 699-703. DOI: 10.1109/ICIP42928.2021.9506347. [29] 陈志旺, 李宗轩, 吕昌昊, 等. 基于HRNet和ASFF的特征融合目标检测算法[J]. 控制与决策, 2024, 39(10): 3207-3215. DOI: 10.13195/j.kzyjc.2023.0852. [30] HUSSAIN M. YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection[J]. Machines, 2023, 11(7): 677. DOI: 10.3390/machines11070677. [31] 文思予, 张上, 张朝阳, 等. 基于改进YOLOv8s的多尺度检测算法[J]. 现代电子技术, 2024, 47(15): 133-138. DOI: 10.16652/j.issn.1004-373x.2024.15.022. [32] 曲晨阳, 吕进, 卫策. 基于改进YOLOv8s的无人机目标检测算法[J]. 国外电子测量技术,2024,43(7): 14-23. DOI: 10.19652/j.cnki.femt.2406082. [33] SUNDARESAN GEETHA A, ALIF M A R, HUSSAIN M, et al. Comparative analysis of YOLOv8 and YOLOv10 in vehicle detection: performance metrics and model efficacy[J]. Vehicles, 2024, 6(3): 1364-1382. DOI: 10.3390/vehicles6030065. [34] 罗伟, 解威威, 侯凯文, 等. 基于YOLOv8s的道路坑洼检测技术研究[J]. 西部交通科技, 2024(11): 28-30. DOI: 10.13282/j.cnki.wccst.2024.11.009. [35] XIE E Z, WANG W H, YU Z D, et al. SegFormer: simple and efficient design for semantic segmentation with transformers[C]// Advances in Neural Information Processing Systems 34 (NeurIPS 2021). Red Hook, NY: Curran Associates Inc., 2021: 12077-12090. [36] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2021: 13708-13717. DOI: 10.1109/CVPR46437.2021.01350. [37] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. DOI: 10.1109/TPAMI.2016.2577031. [38] CAI Z W, VASCONCELOS N. Cascade R-CNN: high quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5): 1483-1498. DOI: 10.1109/TPAMI.2019.2956516. [39] LAW H, DENG J. CornerNet: detecting objects as paired keypoints[C]// Computer Vision-ECCV 2018 (LNIP Volume 11218). Cham: Springer, 2018: 765-781. DOI: 10.1007/978-3-030-01264-9_45. [40] DUAN K W, BAI S, XIE L X, et al. CenterNet: keypoint triplets for object detection[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2019: 6568-6577. DOI: 10.1109/ICCV.2019.00667. [41] TIAN Z, SHEN C H, CHEN H, et al. FCOS: a simple and strong anchor-free object detector[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 1922-1933. DOI: 10.1109/TPAMI.2020.3032166. [42] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2023: 7464-7475. DOI: 10.1109/CVPR52729.2023.00721. [43] MUHAMMAD M B, YEASIN M. Eigen-CAM: class activation map using principal components[C]// 2020 International Joint Conference on Neural Networks (IJCNN). Piscataway, NJ: IEEE, 2020: 1-7. DOI: 10.1109/IJCNN48605.2020. 9206626. [44] BOLYA D, FOLEY S, HAYS J, et al.TIDE: a general toolbox for identifying object detection errors[C]// Computer Vision-ECCV 2020 (LNIP Volume 12348). Cham: Springer, 2020: 558-573. DOI: 10.1007/978-3-030-58580-8_33. |
| [1] | 易见兵, 张裕贤, 曹锋, 李俊, 彭鑫, 陈鑫. 基于时空注意力的3D人体姿态估计网络设计[J]. 广西师范大学学报(自然科学版), 2025, 43(5): 130-144. |
| [2] | 韩烁, 江林峰, 杨建斌. 基于注意力机制PINNs方法求解圣维南方程[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 58-68. |
| [3] | 王旭阳, 章家瑜. 基于跨模态增强网络的时序多模态情感分析[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 97-107. |
| [4] | 赵伟, 田帅, 张强, 王耀申, 王思博, 宋江. 基于改进YOLOv5的平贝母检测模型[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 22-32. |
| [5] | 孙旭, 沈彬, 严馨, 张金鹏, 徐广义. 基于Transformer和TextRank的微博观点摘要方法[J]. 广西师范大学学报(自然科学版), 2023, 41(4): 96-108. |
| [6] | 黄叶祺, 王明伟, 闫瑞, 雷涛. 基于改进的YOLOv5金刚石线表面质量检测[J]. 广西师范大学学报(自然科学版), 2023, 41(4): 123-134. |
| [7] | 陈文康, 陆声链, 刘冰浩, 李帼, 刘晓宇, 陈明. 基于改进YOLOv4的果园柑橘检测方法研究[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 134-146. |
|
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |