广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (5): 52-60.doi: 10.16088/j.issn.1001-6600.2023101304

• 研究论文 • 上一篇    下一篇

基于开关电容的差分无源N通道滤波器

刘畅平1,2,3, 宋树祥1,2,3*, 蒋品群1,2,3, 岑明灿1,2,3   

  1. 1.广西师范大学 电子与信息工程学院/集成电路学院, 广西 桂林 541004;
    2.广西高校集成电路与微系统重点实验室(广西师范大学),广西 桂林 541004;
    3.广西类脑计算与智能芯片重点实验室(广西师范大学),广西 桂林 541004
  • 收稿日期:2023-10-13 修回日期:2023-12-04 出版日期:2024-09-25 发布日期:2024-10-11
  • 通讯作者: 宋树祥(1970—),男,湖南双峰人,广西师范大学教授,博导。E-mail:songshuxiang@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(62061005);广西高校中青年教师科研基础能力提升项目(2020KY02028)

Differential Passive N-path Filter Based on Switched Capacitors

LIU Changping1,2,3, SONG Shuxiang1,2,3*, JIANG Pinqun1,2,3, CEN Mingcan1,2,3   

  1. 1. School of Electronics and Information Engineering/School of Integrated Circuits, Guangxi Normal University, Guilin Guangxi 541004, China;
    2. Key Laboratory of Integrated Circuits and Microsystems(Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region, Guilin Guangxi 541004, China;
    3. Guangxi Key Laboratory of Brain-inspired Computing and Intelligent Chips(Guangxi Normal University), Guilin Guangxi 541004, China
  • Received:2023-10-13 Revised:2023-12-04 Online:2024-09-25 Published:2024-10-11

摘要: 针对传统N通道滤波器不能抑制谐波、谐波混叠且具有一定插入损耗的问题,本文设计一款基于开关电容的差分无源N通道滤波器。该滤波器使用不同容值的电容加权多相信号来消除奇次谐波,利用不同时钟信号叠加的原理抑制谐波混叠,同时,采用电容堆叠技术提供一定的增益减小插入损耗。滤波器采用TSMC 40 nm CMOS工艺,Cadence Spectre RF软件仿真结果表明:该滤波器的中心频率fs可调范围为0.3~1.5 GHz,当fs=500 MHz时,对3次和5次谐波均有48 dB以上的抑制效果,对最强谐波混叠抑制达到60 dB以上,且没有插入损耗,噪声系数(NF)为2.5~2.8 dB,线性度(IIP3)在15 dBm以上。

关键词: N通道滤波器, 谐波抑制, 谐波混叠, 无源, 差分结构

Abstract: A differential passive N-path filter based on switching capacitors is designed to address the issue that traditional N-path filters are unable to suppress harmonics and harmonic aliasing,and have certain insertion losses. This filter eliminates odd harmonics by using capacitance weighted multiphase signals with different capacitance values,suppresses harmonic aliasing by combining different clock signals,and uses capacitance stacking technology to provide certain gain and reduce insertion loss. The filter adopts TSMC 40 nm CMOS process,and the simulation results show that the center frequency fs of the filter can be adjusted from 0.3-1.5 GHz,and the rejection effect of fs=500 MHz is more than 48 dB for the 3rd and 5th harmonics,and the suppression of the most powerful harmonic folding reaches more than 60 dB,and there is no insertion loss,the noise figure (NF) is 2.5-2.8 dB,and the linearity (IIP3) is above 15 dBm.

Key words: N-path filter, harmonic rejection, harmonic folding, passive, differential structure

中图分类号:  TN713

[1] 武康康,朱旭飞,陆叶,等.基于最小二乘法的LS-FIR滤波器[J].广西师范大学学报(自然科学版),2021,39(5):89-99. DOI: 10.16088/j.issn.1001-6600.2020072503.
[2] 袁伟强,宋树祥,程洋,等.超宽带微带带通滤波器的设计[J].广西师范大学学报(自然科学版),2017,35(4):32-38. DOI: 10.16088/j.issn.1001-6600.2017.04.005.
[3] 刘国伦,宋树祥,岑明灿,等.带宽可调带阻滤波器的设计[J].广西师范大学学报(自然科学版),2018,36(3):1-8. DOI: 10.16088/j.issn.1001-6600.2018.03.001.
[4] SOER M C M, KLUMPERINK E A M, de BOER P T, et al. Unified frequency-domain analysis of switched-series-RC passive mixers and samplers[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2010, 57(10): 2618-2631. DOI: 10.1109/TCSI.2010.2046968.
[5] KLUMPERINK E A M, WESTERVELD H J, NAUTA B. N-path filters and mixer-first receivers: a review[C] // 2017 IEEE Custom Integrated Circuits Conference(CICC). Piscataway, NJ: IEEE Press, 2017: 1-8. DOI: 10.1109/CICC.2017.7993643.
[6] FRANKS L E, SANDBERG I W. An alternative approach to the realization of network transfer functions: the N-path filter[J]. Bell System Technical Journal, 1960, 39(5): 1321-1350. DOI: 10.1002/j.1538-7305.1960.tb03962.x.
[7] MIRZAEI A, DARABI H, MURPHY D. Architectural evolution of integrated M-phase high-Q bandpass filters[J]. IEEE Transactions on Circuits and Systems I-Regular Papers, 2012, 59(1): 52-65. DOI: 10.1109/TCSI.2011.2161370.
[8] FORTGENS L C. Approximation of an ideal bandpass filter using an N-path filter with overlapping clocks and harmonic rejection[D]. Enschede: University of Twente, 2012.
[9] XU Y, ZHU J X, KINGET P R. A blocker-tolerant RF front end with harmonic-rejecting N-path filtering[C] // 2014 IEEE Radio Frequency Integrated Circuits Symposium. Piscataway, NJ: IEEE Press, 2014: 39-42. DOI: 10.1109/RFIC.2014.6851652.
[10] HEMATI A, JANNESARI A. Harmonic fold back reduction at the N-path filters[J]. International Journal of Circuit Theory and Applications, 2017, 45(3): 419-438. DOI: 10.1002/cta.2238.
[11] KHORSHIDIAN M, KRISHNASWAMY H. 26.7 an Impedance-Transforming N-Path filter offering passive voltage gain[C] //2021 IEEE International Solid-State Circuits Conference(ISSCC). Piscataway, NJ: IEEE Press, 2021: 365-367. DOI: 10.1109/ISSCC42613.2021.9365778.
[12] 钟辉,宋树祥,岑明灿,等.基于采样计算的差分N通道滤波器[J].广西师范大学学报(自然科学版),2022,40(4):58-67. DOI: 10.16088/j.issn.1001-6600.2021101102.
[13] GHAFFARI A, KLUMPERINK E A M, SOER M C M, et al. Tunable high-Q N-path band-pass filters: modeling and verification[J]. IEEE Journal of Solid-State Circuits, 2011, 46(5): 998-1010. DOI: 10.1109/JSSC.2011.2117010.
[14] XU Y, ZHU J X, KINGET P R. A Blocker-Tolerant RF front end with harmonic-rejecting N-path filter[J]. IEEE Journal of Solid-state Circuits, 2018, 53(2): 327-339. DOI: 10.1109/JSSC.2017.2778273.
[15] PURUSHOTHAMAN V K, KLUMPERINK E A M, CLAVERA B T, et al. A fully passive RF front end with 13-dB gain exploiting implicit capacitive stacking in a bottom-plate N-path filter/mixer[J]. IEEE Journal of Solid-state Circuits, 2020, 55(5): 1139-1150. DOI: 10.1109/JSSC.2019.2959489.
[16] TAVASSOLI M, JALALI A. Analysis of an enhanced-Q N-path filter with improved even-order harmonic rejection[J]. Circuits Systems and Signal Processing, 2018, 37(3): 939-964. DOI: 10.1007/s00034-017-0580-z.
[17] HAZRATI A, JALALI A. Signal folding improvement in N-path filters by programmable switched-LC band-stop pre-filtering[C] // 2019 27th Iranian Conference on Electrical Engineering(ICEE). Piscataway, NJ: IEEE Press, 2019: 228-232. DOI: 10.1109/IranianCEE.2019.8786687.
[18] HAZRATI A, JALALI A, MEGHDADI M, et al. A method for rejecting 3k-th harmonics in bandpass 6N-path filters[J]. International Journal of Circuit Theory and Applications, 2020, 48(3): 335-348. DOI: 10.1002/cta.2738.
[19] UL HAQ F, ENGLUND M, ANTONOV Y, et al. A six-phase two-stage blocker-tolerant harmonic-rejection receiver[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(5): 1964-1976. DOI: 10.1109/TMTT.2020.2966152.
[20] 盛艳婷,蒋品群,宋树祥,等.高增益差分无源N通道带通滤波器的设计[J].电子元件与材料,2022,41(12):1332-1338. DOI: 10.14106/j.cnki.1001-2028.2022.0292.
[1] 钟辉, 宋树祥, 岑明灿, 蔡超波, 蒋品群, 刘振宇. 基于采样计算的差分N通道滤波器[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 58-67.
[2] 蒋品群, 顾燊, 宋树祥, 岑明灿. N通道带阻滤波器谐波分析与抗混叠研究[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 81-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李文博, 董青, 刘超, 张奇. 基于对比学习的儿科问诊对话细粒度意图识别[J]. 广西师范大学学报(自然科学版), 2024, 42(4): 1 -10 .
[2] 高盛祥, 杨元樟, 王琳钦, 莫尚斌, 余正涛, 董凌. 面向域外说话人适应场景的多层级解耦个性化语音合成[J]. 广西师范大学学报(自然科学版), 2024, 42(4): 11 -21 .
[3] 朱格格, 黄安书, 覃盈盈. 基于Web of Science的国际红树林研究发展态势分析[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 1 -12 .
[4] 何静, 冯元柳, 邵靖雯. 基于CiteSpace的多源数据融合研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 13 -27 .
[5] 左钧元, 李欣彤, 曾子涵, 梁超, 蔡进军. 金属有机骨架基催化剂在糠醛选择性加氢反应中的应用研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 28 -38 .
[6] 谭全伟, 薛贵军, 谢文举. 基于VMD和RDC-Informer的短期供热负荷预测模型[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 39 -51 .
[7] 王党树, 孙龙, 董振, 贾如琳, 杨黎康, 吴家驹, 王新霞. 变化负载下全桥LLC谐振变换器参数优化设计[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 61 -71 .
[8] 张锦忠, 韦笃取. PMSM混沌系统无初始状态约束的固定时间有界控制[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 72 -78 .
[9] 涂智荣, 凌海英, 李帼, 陆声链, 钱婷婷, 陈明. 基于改进YOLOv7-Tiny的轻量化百香果检测方法[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 79 -90 .
[10] 杜帅文, 靳婷. 基于用户行为特征的深度混合推荐算法[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 91 -100 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发