广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (5): 39-51.doi: 10.16088/j.issn.1001-6600.2023082702

• 研究论文 • 上一篇    下一篇

基于VMD和RDC-Informer的短期供热负荷预测模型

谭全伟, 薛贵军*, 谢文举   

  1. 华北理工大学 电气工程学院,河北 唐山 063200
  • 收稿日期:2023-08-27 修回日期:2023-11-30 出版日期:2024-09-25 发布日期:2024-10-11
  • 通讯作者: 薛贵军(1967—),男,河北唐山人,华北理工大学高级工程师。E-mail: xueguijun@126.com
  • 基金资助:
    河北省自然科学基金(E2020209121)

Short-Term Heating Load Prediction Model Based on VMD and RDC-Informer

TAN Quanwei, XUE Guijun*, XIE Wenju   

  1. School of Electrical Engineering, North China University of Science and Technology, Tangshan Heibei 063200, China
  • Received:2023-08-27 Revised:2023-11-30 Online:2024-09-25 Published:2024-10-11

摘要: 精准的供热负荷预测不仅可以有效降低能源消耗,而且可以提高供热系统效率和用户舒适度。为了提升供热负荷预测的准确性,本文将变分模态分解算法和改进的Informer模型结合应用于供热负荷预测中。首先使用VMD算法分解供热负荷数据,降低数据的非平稳性;然后在Informer模型中引入相对位置编码代替绝对位置编码,以更好地捕捉序列数据中的依赖关系和避免信息泄漏;接着采用膨胀因果卷积代替正则卷积,增加感受野,提升局部信息的提取能力;最后在多个数据集上与主流预测模型(GRU、LSTM、Transformer和Informer)进行对比实验。结果表明,RDC-Informer模型的评价指标R2达到了98.3%,与对比模型相比,分别提高了11.6%、6.3%、4.7%和2.6%。此外,通过增加卷积核以评估膨胀因果卷积的效果,验证了RDC-Informer模型的适用性和准确性,为进一步提高智慧供热的时效性提供了一定参考。

关键词: 供热负荷预测, Informer, 膨胀因果卷积, 相对位置编码, VMD

Abstract: Accurate prediction of heating load not only effectively reduces energy consumption but also improves the efficiency of the heating system and user comfort. To enhance the accuracy of heating load prediction, this study combines the Variational Mode Decomposition (VMD) algorithm with an improved Informer model for heating load prediction. Firstly, the VMD algorithm is used to decompose the heating load data, reducing its non-stationarity. Secondly, relative positional encoding is introduced in the Informer model to better capture the dependencies in the sequential data and avoid information leakage, replacing the absolute positional encoding. Furthermore, dilated causal convolution is adopted instead of regular convolution to increase the receptive field and enhance the extraction of local information. Comparative experiments with mainstream prediction models (GRU, LSTM, Transformer, and Informer) are conducted on multiple datasets. The experimental results demonstrate that the RDC-Informer model achieves an R2 evaluation metric of 98.3%, which is 11.6%, 6.3%, 4.7%, and 2.6% higher than the comparative models, respectively. Additionally, the effectiveness of the dilated causal convolution is verified by increasing the convolution kernel, confirming the applicability and accuracy of the RDC-Informer model and providing a reference for further improvement in real-time smart heating.

Key words: heat supply load forecast, Informer, dilated causal convolution, relative position coding, VMD

中图分类号:  TU995

[1] GONG M J, BAI Y, QIN J, et al. Gradient boosting machine for predicting return temperature of district heating system: a case study for residential buildings in Tianjin[J]. Journal of Building Engineering, 2020, 27: 100950. DOI: 10.1016/j.jobe.2019.100950.
[2] 牛一鸣.“双碳”背景下北京市局住建筑运行碳排放预测研究[D]. 北京:北京建筑大学,2023. DOI: 10.26943/d.cnki.gbjzc.2023.000642.
[3] 景胜蓝,王飞,雷勇刚.热负荷预测方法研究综述[J].建筑热能通风空调,2015,34(4):31-35. DOI: 10.3969/j.issn.1003-0344.2015.04.008.
[4] CHENG R Y, YU J Q, ZHANG M, et al. Short-term hybrid forecasting model of ice storage air-conditioning based on improved SVR[J]. Journal of Building Engineering, 2022, 50: 104194. DOI: 10.1016/j.jobe.2022.104194.
[5] DONG B, LI Z X, RAHMAN S M M, et al. A hybrid model approach for forecasting future residential electricity consumption[J]. Energy and Buildings, 2016, 117: 341-351. DOI: 10.1016/j.enbuild.2015.09.033.
[6] ENESCU D. A review of thermal comfort models and indicators for indoor environments[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 1353-1379. DOI: 10.1016/j.rser.2017.05.175.
[7] WANG Y J, ZHAN C H, LI G H, et al. Physics-guided LSTM model for heat load prediction of buildings[J]. Energy and Buildings, 2023, 294: 113169. DOI: 10.1016/j.enbuild.2023.113169.
[8] SUN Y, HAGHIGHAT F, FUNG B C M. A review of the-state-of-the-art in data-driven approaches for building energy prediction[J]. Energy and Buildings, 2020, 221: 110022. DOI: 10.1016/j.enbuild.2020.110022.
[9] HUANG S J, SHIH K R. Short-term load forecasting via ARMA model identification including non-Gaussian process considerations[J]. IEEE Transactions on Power Systems, 2003, 18(2): 673-679. DOI: 10.1109/TPWRS.2003.811010.
[10] KATO K, SAKAWA M, ISHIMARU K, et al. Heat load prediction through recurrent neural network in district heating and cooling systems[C] // 2008 IEEE International Conference on Systems, Man and Cybernetics. Piscataway, NJ: IEEE Press, 2008: 1401-1406. DOI: 10.1109/ICSMC.2008.4811482.
[11] LIU J Y, WANG X, ZHAO Y, et al. Heating load forecasting for combined heat and power plants via strand-based LSTM[J]. IEEE Access, 2020, 8: 33360-33369. DOI: 10.1109/access.2020.2972303.
[12] 周蜀杰,曾园园,江昊.基于扩张因果卷积的城市客流量预测算法[J].武汉大学学报(工学版),2023,56(2):218-225. DOI: 10.14188/j.1671-8844.2023-02-011.
[13] 刘洪笑,向勉,周丙涛,等.基于Informer的长序列时间序列电力负荷预测[J].湖北民族大学学报(自然科学版),2021,39(3):326-331. DOI: 10.13501/j.cnki.42-1908/n.2021.09.015.
[14] DU B G, HUANG S, GUO J, et al. Interval forecasting for urban water demand using PSO optimized KDE distribution and LSTM neural networks[J]. Applied Soft Computing, 2022, 122: 108875. DOI: 10.1016/j.asoc.2022.108875.
[15] GHOFRANI M, GHAYEKHLOO M, ARABALI A, et al. A hybrid short-term load forecasting with a new input selection framework[J]. Energy, 2015, 81: 777-786. DOI: 10.1016/j.energy.2015.01.028.
[16] SONG J C, ZHANG L Y, XUE G X, et al. Predicting hourly heating load in a district heating system based on a hybrid CNN-LSTM model[J]. Energy and Buildings, 2021, 243: 110998. DOI: 10.1016/j.enbuild.2021.110998.
[17] JAVED U, IJAZ K, JAWAD M, et al. A novel short receptive field based dilated causal convolutional network integrated with Bidirectional LSTM for short-term load forecasting[J]. Expert Systems with Applications, 2022, 205: 117689. DOI: 10.1016/j.eswa.2022.117689.
[18] ZHANG L, ALAHMAD M, WEN J. Comparison of time-frequency-analysis techniques applied in building energy data noise cancellation for building load forecasting: a real-building case study[J]. Energy and Buildings, 2021, 231: 110592. DOI: 10.1016/j.enbuild.2020.110592.
[19] HE F F, ZHOU J Z, FENG Z K, et al. A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm[J]. Applied Energy, 2019, 237: 103-116. DOI: 10.1016/j.apenergy.2019.01.055.
[20] LI F Y, WAN Z B, KOCH T, et al. Improving the accuracy of multi-step prediction of building energy consumption based on EEMD-PSO-Informer and long-time series[J]. Computers and Electrical Engineering, 2023, 110: 108845. DOI: 10.1016/j.compeleceng.2023.108845.
[21] REZAIE B, ROSEN M A. District heating and cooling: review of technology and potential enhancements[J]. Applied Energy, 2012, 93: 2-10. DOI: 10.1016/j.apenergy.2011.04.020.
[22] FANG T T, LAHDELMA R. Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system[J]. Applied Energy, 2016, 179: 544-552. DOI: 10.1016/j.apenergy.2016.06.133.
[23] DOTZAUER E. Simple model for prediction of loads in district-heating systems[J]. Applied Energy, 2002, 73(3/4): 277-284. DOI: 10.1016/s0306-2619(02)00078-8.
[24] XUE P N, JIANG Y, ZHOU Z G, et al. Multi-step ahead forecasting of heat load in district heating systems using machine learning algorithms[J]. Energy, 2019, 188: 116085. DOI: 10.1016/j.energy.2019.116085.
[25] IDOWU S, SAGUNA S G A, ÅHLUND C, et al. Applied machine learning: forecasting heat load in district heating system[J]. Energy and Buildings, 2016, 133: 478-488. DOI: 10.1016/j.enbuild.2016.09.068.
[26] 张琰妮,史加荣,李津,等.融合残差与VMD-ELM-LSTM的短期风速预测[J].太阳能学报,2023,44(9):340-347. DOI: 10.19912/j.0254-0096.tynxb.2022-0738.
[27] 韦振汉,宋树祥,夏海英.基于随机森林的锂离子电池荷电状态估算[J].广西师范大学学报(自然科学版),2018,36(4):27-33. DOI: 10.16088/j.issn.1001-6600.2018.04.004.
[28] DAI Z H, YANG Z L, YANG Y M, et al. Transformer-XL: attentive language models beyond a fixed-length context[EB/OL]. (2019-06-02)[2023-11-30]. https://arxiv.org/abs/1901.02860. DOI: 10.48550/arXiv.1901.02860.
[29] JURADO M, SAMPER M, ROSÉS R. An improved encoder-decoder-based CNN model for probabilistic short-term load and PV forecasting[J]. Electric Power Systems Research, 2023, 217: 109153. DOI: 10.1016/j.epsr.2023.109153.
[30] HUANG N T, WU Y Y, CAI G W, et al. Short-term wind speed forecast with low loss of information based on feature generation of OSVD[J]. IEEE Access, 2019, 7: 81027-81046. DOI: 10.1109/ACCESS.2019.2922662.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李文博, 董青, 刘超, 张奇. 基于对比学习的儿科问诊对话细粒度意图识别[J]. 广西师范大学学报(自然科学版), 2024, 42(4): 1 -10 .
[2] 高盛祥, 杨元樟, 王琳钦, 莫尚斌, 余正涛, 董凌. 面向域外说话人适应场景的多层级解耦个性化语音合成[J]. 广西师范大学学报(自然科学版), 2024, 42(4): 11 -21 .
[3] 朱格格, 黄安书, 覃盈盈. 基于Web of Science的国际红树林研究发展态势分析[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 1 -12 .
[4] 何静, 冯元柳, 邵靖雯. 基于CiteSpace的多源数据融合研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 13 -27 .
[5] 左钧元, 李欣彤, 曾子涵, 梁超, 蔡进军. 金属有机骨架基催化剂在糠醛选择性加氢反应中的应用研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 28 -38 .
[6] 刘畅平, 宋树祥, 蒋品群, 岑明灿. 基于开关电容的差分无源N通道滤波器[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 52 -60 .
[7] 王党树, 孙龙, 董振, 贾如琳, 杨黎康, 吴家驹, 王新霞. 变化负载下全桥LLC谐振变换器参数优化设计[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 61 -71 .
[8] 张锦忠, 韦笃取. PMSM混沌系统无初始状态约束的固定时间有界控制[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 72 -78 .
[9] 涂智荣, 凌海英, 李帼, 陆声链, 钱婷婷, 陈明. 基于改进YOLOv7-Tiny的轻量化百香果检测方法[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 79 -90 .
[10] 杜帅文, 靳婷. 基于用户行为特征的深度混合推荐算法[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 91 -100 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发