|
广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (3): 83-91.doi: 10.16088/j.issn.1001-6600.2020052503
郭泽平1, 董盼1, 刘金兰1, 康杰1, 曾敏玉1, 苏凯敏1, 林卿1,2, 何云1*
GUO Zeping1, DONG Pan1, LIU Jinlan1, KANG Jie1, ZENG Minyu1, SU kaimin1, LIN Qin1,2, HE Yun1*
摘要: 本文以六亚甲基亚胺(HMI)为模板剂,利用油浴加热和磁力搅拌实现的动态水热晶化合成法,通过改变硅铝物质的量之比(下文简称硅铝比,使用x表示)、晶化温度、晶化时间,研究MCM-56分子筛的合成规律。实验结果表明:硅铝比x=13.33时,因为不满足MCM-56分子筛晶体成核和生长所需的无机结构单元的条件,无法合成MCM-56分子筛;硅铝比x=16.67时,虽然138 ℃晶化5 d、7 d所得样品在晶面100、300、310出现了衍射峰,但结晶度不高,晶化并不完全,反应产物的结构主要为不定型态;当硅铝比x=20.20、晶化温度为138~145 ℃时,均可得到结晶态的MCM-56分子筛,138 ℃晶化7 d所合成样品的比表面积最大,为307.6 m2/g。
中图分类号:
[1]CSICSERY S M. Shape-selective catalysis in zeolites[J]. Zeolites, 1984, 4(3): 202-213. DOI:10.1016/0144-2449(84) 90024-1. [2]WANG C Y, LU K, JIN F, et al. Modification of MWW layer structure to investigate the effect of acidity and Zn-type sites on ethane dehydroaromatization[J/OL]. Catalysis Today, 2020[2020-05-25]. https://www.sciencedirect.com/science/article/abs/pii/S0920586120301784. DOI:10.1016/j.cattod.2020.03.056. [3]JIANG L, LI X Y, GONG Y J, et al. MCM-56 stabilization synthesis using auxiliary tetraethylammounium ions: Its role to inhibit surface Si-O-Al bridged linkage and retain highly delaminated structure[J]. Microporous and Mesoporous Materials, 2020, 302: 110245. DOI:10.1016/j.micromeso.2020.110245. [4]OSTROUMOVA V A,MAKSIMOV A L. MWW-type zeolites: MCM-22, MCM-36, MCM-49, and MCM-56 (a review)[J]. Petroleum Chemistry, 2019, 59(8):788-801. DOI:10.1134/S0965544119080140. [5]WOJTASZEK-GURDAK A, ZIELINSKA M, ZIOLEK M. MWW layered zeolites modified with niobium species- surface and catalytic properties[J]. Catalysis Today, 2019, 325: 89-97. DOI:10.1016/j.cattod.2018.07.044. [6]MARTÍNEZ A, PERIS E, SASTRE G. Dehydroaromatization of methane under non-oxidative conditions over bifunctional Mo/ITQ-2 catalysts[J]. Catalysis Today, 2005, 107/108: 676-684. DOI:10.1016/j.cattod.2005.07.051. [7]FUNG A S, LAWTON S L, ROTH W J. Synthetic layered MCM-56, its synthesis and use: U.S. Patent No. 5362697[P]. 1994-11-08. [8]YI T, ZHANG Y B, YANG X G. Combination of Pt@CeO2/MCM-56 and CeO2-CuO/MCM-56 to purify the exhaust emissions from diesel vehicles[J]. Applied Catalysis A: General, 2019, 570: 387-394. DOI:10.1016/j.apcata.2018.07.041. [9]李丽媛, 陈奕, 许中强, 等. 均三甲苯在MCM-22和MCM-56分子筛上的吸附和扩散[J]. 工业催化, 2013, 21(7): 30-34. DOI:10.3969/j.issn.1008-1143.2013.07.007. [10]ROTH W J, CHLUBNÁ P, KUBŮ M, et al. Swelling of MCM-56 and MCM-22P with a new medium-surfactant- tetramethylammonium hydroxide mixtures[J]. Catalysis today, 2013, 204: 8-14. DOI:10.1016/j.cattod.2012.07.040. [11]ROTH W J, ČEJKA J, MILLINI R, et al. Swelling and interlayer chemistry of layered MWW zeolites MCM-22 and MCM-56 with high Al content[J]. Chemistry of Materials, 2015, 27(13): 4620-4629. DOI:10.1021/acs.chemmater.5b01030. [12]GIL B, ROTH W J, MAKOWSKI W, et al. Facile evaluation of the crystallization and quality of the transient layered zeolite MCM-56 by infrared spectroscopy[J]. Catalysis Today, 2015, 243: 39-45. DOI:10.1016/j.cattod.2014.07.031. [13]YANG P P, YU J F, WANG Z L, et al. Preparation, characterization of MCM-56 and catalytic activity in one-step synthesis of MIBK from acetone[J]. Catalysis Communications, 2005, 6(2): 107-111. DOI:10.1016/j.catcom.2004.11.008. [14]WANG L L, WANG Y, LIU Y M, et al. Post-transformation of MWW-type lamellar precursors into MCM-56 analogues[J]. Microporous and Mesoporous Materials, 2008, 113(1/2/3): 435-444. DOI:10.1016/j.micromeso.2007.11.044. [15]JIANG L, LI X Y, GONG Y J, et al. MCM-56 stabilization synthesis using auxiliary tetraethylammounium ions: its role to inhibit surface Si-O-Al bridged linkage and retain highly delaminated structure[J]. Microporous and Mesoporous Materials, 2020, 302: 110245. DOI:10.1016/j.micromeso.2020.110245. [16]孙娜, 王海彦, 马宇翔, 等. 硅铝源法制备MOR@SAPO-11复合分子筛及其异构化性能[J]. 石油学报(石油加工), 2019, 35(6): 1175-1182. [17]ROTH W J. MCM-22 zeolite family and the delaminated zeolite MCM-56 obtained in one-step synthesis[J]. Studies in Surface Science and Catalysis, 2005, 158(Part A): 19-26. DOI:10.1016/S0167-2991(05)80317-9. [18]KORZENIOWSKA A, GRZYBEK J, KALAHURSKA K, et al. The structure-catalytic activity relationship for the transient layered zeolite MCM-56 with MWW topology[J]. Catalysis Today, 2020, 345: 116-124. DOI:10.1016/j.cattod.2019.09.044. [19]ZHAOX S, LU G Q, WHITTAKER A K, et al. Comprehensive study of surface chemistry of MCM-41 using 29Si CP/MAS NMR, FTIR, Pyridine-TPD, and TGA[J]. Journal of Physical Chemistry B, 1997, 101(33): 6525-6531. DOI:10.1021/jp971366+. [20]LIU Z H, YANG X J, MAKITA Y, et al. Preparation of a polycation-intercalated layered manganese oxide nanocomposite by a delamination/reassembling process[J]. Chemistry of Materials, 2002, 14(11): 4800-4806. DOI:10.1021/cm020652h. [21]CORMA A, CORELL C, PÉREZ-PARIENTE J, et al. Adsorption and catalytic properties of MCM-22: the influence of zeolite structure[J]. Zeolites, 1996, 16(1): 7-14. DOI:10.1016/0144-2449(95)00084-4. [22]WANG Y, LIU Y M, WANG L L, et al. Postsynthesis, characterization, and catalytic properties of aluminosilicates analogous to MCM-56[J]. Journal of Physical Chemistry C, 2009, 113(43): 18753-18760. DOI:10.1021/jp904436c. [23]LEE K, YEOM J, YOON C, et al. Seasonal and geographic effects on predicting personal exposure to nitrogen dioxide by time-weighted microenvironmental model[J]. Atmospheric Environment, 2013, 67: 143-148. DOI:10.1016/j.atmosenv.2012.11.010. [24]张凯, 杨仕超, 罗敏, 等. 纳米片层状ZSM-5分子筛制备及其对室内环境VOCs吸附性能[J]. 环境工程, 2020, 38(1): 60-64, 74. DOI:10.13205/j.hjgc.202001009. [25]吴维涛, 仲兆平, 顾佳雯, 等. HZSM-5/MCM-41复合分子筛的制备及其对竹木热解的影响[J]. 可再生能源, 2019, 37(11): 1581-1588. DOI:10.13941/j.cnki.21-1469/tk.2019.11.001. [26]GRZYBEK J, GIL B, ROTH W J, et al. Characterization of Co and Fe-MCM-56 catalysts for NH3-SCR and N2O decomposition: an in situ FTIR study[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 196: 281-288. DOI:10.1016/j.saa.2018.02.033. |
No related articles found! |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |