广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (3): 83-91.doi: 10.16088/j.issn.1001-6600.2020052503

• • 上一篇    下一篇

低硅铝比条件下MCM-56分子筛合成规律研究

郭泽平1, 董盼1, 刘金兰1, 康杰1, 曾敏玉1, 苏凯敏1, 林卿1,2, 何云1*   

  1. 1.广西师范大学 物理科学与技术学院, 广西 桂林 541004;
    2.海南医学院 医学信息学院, 海南 海口 571101
  • 收稿日期:2020-05-25 修回日期:2020-10-28 发布日期:2021-05-13
  • 通讯作者: 何云(1962—),男,广西灌阳人,广西师范大学教授,博士。E-mail: hy@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(51901052); 广西高校研究生教育创新项目(XJGY2020017); 广西研究生教育创新计划项目(JGY2019034); 大学生创新创业训练计划项目(201910602081); 广西高校中青年教师科研基础能力提升项目(2020KY02022)

Study on the Synthesis of MCM-56 Zeolite with Low SiO2/Al2O3

GUO Zeping1, DONG Pan1, LIU Jinlan1, KANG Jie1, ZENG Minyu1, SU kaimin1, LIN Qin1,2, HE Yun1*   

  1. 1. College of Physical Science and Technology, Guangxi Normal University, Guilin Guangxi 541004, China;
    2. College of Medical Information, Hainan Medical University, Haikou Hainan 571101, China
  • Received:2020-05-25 Revised:2020-10-28 Published:2021-05-13

摘要: 本文以六亚甲基亚胺(HMI)为模板剂,利用油浴加热和磁力搅拌实现的动态水热晶化合成法,通过改变硅铝物质的量之比(下文简称硅铝比,使用x表示)、晶化温度、晶化时间,研究MCM-56分子筛的合成规律。实验结果表明:硅铝比x=13.33时,因为不满足MCM-56分子筛晶体成核和生长所需的无机结构单元的条件,无法合成MCM-56分子筛;硅铝比x=16.67时,虽然138 ℃晶化5 d、7 d所得样品在晶面100、300、310出现了衍射峰,但结晶度不高,晶化并不完全,反应产物的结构主要为不定型态;当硅铝比x=20.20、晶化温度为138~145 ℃时,均可得到结晶态的MCM-56分子筛,138 ℃晶化7 d所合成样品的比表面积最大,为307.6 m2/g。

关键词: 分子筛, MCM-56分子筛, 低硅铝比, 比表面积

Abstract: The synthesis law of MCM-56 molecular sieve was studied by changing the SiO2/Al2O3,crystallization temperature and crystallization time under the conditions of oil bath heating and magnetic stirring reaction materials with HMI as template. The experimental results show that MCM-56 molecular sieves can not be obtained when the SiO2/Al2O3 is 13.33,the crystallization temperature is 138-145 ℃,and the crystallization time is 5-8 days. When the ratio of SiO2/Al2O3 is 16.67, although diffraction peaks appeare in the crystal faces of 100, 300 and 310 after 5 days and 7 days of crystallization at 138 ℃, the crystallinity is not high and the crystallization is not complete,the main structure of the products is amorphous. When the ratio of SiO2/Al2O3 is 20.20 and the crystallization temperature is 138-145 ℃,the crystallized of MCM-56 molecular sieve can be obtained,and the specific surface area of the synthesized sample is 307.6 m2/g under the condition of crystallization under 138 ℃ for 7 days.

Key words: molecular sieve, MCM-56 molecular sieve, low SiO2/Al2O3, specific surface area

中图分类号: 

  • O469
[1]CSICSERY S M. Shape-selective catalysis in zeolites[J]. Zeolites, 1984, 4(3): 202-213. DOI:10.1016/0144-2449(84) 90024-1.
[2]WANG C Y, LU K, JIN F, et al. Modification of MWW layer structure to investigate the effect of acidity and Zn-type sites on ethane dehydroaromatization[J/OL]. Catalysis Today, 2020[2020-05-25]. https://www.sciencedirect.com/science/article/abs/pii/S0920586120301784. DOI:10.1016/j.cattod.2020.03.056.
[3]JIANG L, LI X Y, GONG Y J, et al. MCM-56 stabilization synthesis using auxiliary tetraethylammounium ions: Its role to inhibit surface Si-O-Al bridged linkage and retain highly delaminated structure[J]. Microporous and Mesoporous Materials, 2020, 302: 110245. DOI:10.1016/j.micromeso.2020.110245.
[4]OSTROUMOVA V A,MAKSIMOV A L. MWW-type zeolites: MCM-22, MCM-36, MCM-49, and MCM-56 (a review)[J]. Petroleum Chemistry, 2019, 59(8):788-801. DOI:10.1134/S0965544119080140.
[5]WOJTASZEK-GURDAK A, ZIELINSKA M, ZIOLEK M. MWW layered zeolites modified with niobium species- surface and catalytic properties[J]. Catalysis Today, 2019, 325: 89-97. DOI:10.1016/j.cattod.2018.07.044.
[6]MARTÍNEZ A, PERIS E, SASTRE G. Dehydroaromatization of methane under non-oxidative conditions over bifunctional Mo/ITQ-2 catalysts[J]. Catalysis Today, 2005, 107/108: 676-684. DOI:10.1016/j.cattod.2005.07.051.
[7]FUNG A S, LAWTON S L, ROTH W J. Synthetic layered MCM-56, its synthesis and use: U.S. Patent No. 5362697[P]. 1994-11-08.
[8]YI T, ZHANG Y B, YANG X G. Combination of Pt@CeO2/MCM-56 and CeO2-CuO/MCM-56 to purify the exhaust emissions from diesel vehicles[J]. Applied Catalysis A: General, 2019, 570: 387-394. DOI:10.1016/j.apcata.2018.07.041.
[9]李丽媛, 陈奕, 许中强, 等. 均三甲苯在MCM-22和MCM-56分子筛上的吸附和扩散[J]. 工业催化, 2013, 21(7): 30-34. DOI:10.3969/j.issn.1008-1143.2013.07.007.
[10]ROTH W J, CHLUBNÁ P, KUBŮ M, et al. Swelling of MCM-56 and MCM-22P with a new medium-surfactant- tetramethylammonium hydroxide mixtures[J]. Catalysis today, 2013, 204: 8-14. DOI:10.1016/j.cattod.2012.07.040.
[11]ROTH W J, ČEJKA J, MILLINI R, et al. Swelling and interlayer chemistry of layered MWW zeolites MCM-22 and MCM-56 with high Al content[J]. Chemistry of Materials, 2015, 27(13): 4620-4629. DOI:10.1021/acs.chemmater.5b01030.
[12]GIL B, ROTH W J, MAKOWSKI W, et al. Facile evaluation of the crystallization and quality of the transient layered zeolite MCM-56 by infrared spectroscopy[J]. Catalysis Today, 2015, 243: 39-45. DOI:10.1016/j.cattod.2014.07.031.
[13]YANG P P, YU J F, WANG Z L, et al. Preparation, characterization of MCM-56 and catalytic activity in one-step synthesis of MIBK from acetone[J]. Catalysis Communications, 2005, 6(2): 107-111. DOI:10.1016/j.catcom.2004.11.008.
[14]WANG L L, WANG Y, LIU Y M, et al. Post-transformation of MWW-type lamellar precursors into MCM-56 analogues[J]. Microporous and Mesoporous Materials, 2008, 113(1/2/3): 435-444. DOI:10.1016/j.micromeso.2007.11.044.
[15]JIANG L, LI X Y, GONG Y J, et al. MCM-56 stabilization synthesis using auxiliary tetraethylammounium ions: its role to inhibit surface Si-O-Al bridged linkage and retain highly delaminated structure[J]. Microporous and Mesoporous Materials, 2020, 302: 110245. DOI:10.1016/j.micromeso.2020.110245.
[16]孙娜, 王海彦, 马宇翔, 等. 硅铝源法制备MOR@SAPO-11复合分子筛及其异构化性能[J]. 石油学报(石油加工), 2019, 35(6): 1175-1182.
[17]ROTH W J. MCM-22 zeolite family and the delaminated zeolite MCM-56 obtained in one-step synthesis[J]. Studies in Surface Science and Catalysis, 2005, 158(Part A): 19-26. DOI:10.1016/S0167-2991(05)80317-9.
[18]KORZENIOWSKA A, GRZYBEK J, KALAHURSKA K, et al. The structure-catalytic activity relationship for the transient layered zeolite MCM-56 with MWW topology[J]. Catalysis Today, 2020, 345: 116-124. DOI:10.1016/j.cattod.2019.09.044.
[19]ZHAOX S, LU G Q, WHITTAKER A K, et al. Comprehensive study of surface chemistry of MCM-41 using 29Si CP/MAS NMR, FTIR, Pyridine-TPD, and TGA[J]. Journal of Physical Chemistry B, 1997, 101(33): 6525-6531. DOI:10.1021/jp971366+.
[20]LIU Z H, YANG X J, MAKITA Y, et al. Preparation of a polycation-intercalated layered manganese oxide nanocomposite by a delamination/reassembling process[J]. Chemistry of Materials, 2002, 14(11): 4800-4806. DOI:10.1021/cm020652h.
[21]CORMA A, CORELL C, PÉREZ-PARIENTE J, et al. Adsorption and catalytic properties of MCM-22: the influence of zeolite structure[J]. Zeolites, 1996, 16(1): 7-14. DOI:10.1016/0144-2449(95)00084-4.
[22]WANG Y, LIU Y M, WANG L L, et al. Postsynthesis, characterization, and catalytic properties of aluminosilicates analogous to MCM-56[J]. Journal of Physical Chemistry C, 2009, 113(43): 18753-18760. DOI:10.1021/jp904436c.
[23]LEE K, YEOM J, YOON C, et al. Seasonal and geographic effects on predicting personal exposure to nitrogen dioxide by time-weighted microenvironmental model[J]. Atmospheric Environment, 2013, 67: 143-148. DOI:10.1016/j.atmosenv.2012.11.010.
[24]张凯, 杨仕超, 罗敏, 等. 纳米片层状ZSM-5分子筛制备及其对室内环境VOCs吸附性能[J]. 环境工程, 2020, 38(1): 60-64, 74. DOI:10.13205/j.hjgc.202001009.
[25]吴维涛, 仲兆平, 顾佳雯, 等. HZSM-5/MCM-41复合分子筛的制备及其对竹木热解的影响[J]. 可再生能源, 2019, 37(11): 1581-1588. DOI:10.13941/j.cnki.21-1469/tk.2019.11.001.
[26]GRZYBEK J, GIL B, ROTH W J, et al. Characterization of Co and Fe-MCM-56 catalysts for NH3-SCR and N2O decomposition: an in situ FTIR study[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 196: 281-288. DOI:10.1016/j.saa.2018.02.033.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄燕萍, 韦煜明. 一类分数阶微分方程多点边值问题的多解性[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 41 -49 .
[2] 包金萍, 宇克莉, 李咏兰, 郑连斌. 临高人的瘦体质量指数与脂肪质量指数[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 142 -147 .
[3] 彭琦, 朱新华, 陈意山. 一种基于词频歧义消解的通用中文分词法[J]. 广西师范大学学报(自然科学版), 2016, 34(1): 59 -65 .
[4] 汪建华, 李玉珑, 陈敦学, 朱鑫, 刘知行, 张建社, 褚武英, 宾石玉. 饥饿再投喂对鳜肌FSRP-1、FSRP-3和肠道PepT1基因表达的影响[J]. 广西师范大学学报(自然科学版), 2016, 34(1): 144 -149 .
[5] 袁乐平, 孙瑞山. 飞行冲突调配概率安全评估方法研究[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 27 -31 .
[6] 黄婉云, 苏桂发, 潘成学, 覃江克, 唐煌, 义祥辉. 构象限制二肽的合成及其晶体结构研究[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 56 -60 .
[7] 宋婷, 谢显中, 胡小峰. 分簇频谱检测报告信道的信噪比墙及性能分析[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 169 -176 .
[8] 郑铿涛, 林楠铠, 付颖雯, 王连喜, 蒋盛益. 汉语-印尼语平行语料自动对齐方法研究[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 89 -97 .
[9] 吕玉博, 韦华全, 李敏. 几乎SS-嵌入子群对有限群p-幂零性的影响[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 149 -154 .
[10] 张刚, 庾太林, 陈道剑, 马昱君, 吴冉昕. 广西猫儿山野化放归白颈长尾雉的食性研究[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 218 -222 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发