广西师范大学学报(自然科学版) ›› 2017, Vol. 35 ›› Issue (4): 76-83.doi: 10.16088/j.issn.1001-6600.2017.04.011

• • 上一篇    下一篇

团簇Co5B2反应活性的DFT研究

李雯博,方志刚*,赵振宁,陈 林,徐诗浩,韩建铭,刘 琪,崔远东   

  1. 辽宁科技大学化学工程学院,辽宁鞍山114051
  • 出版日期:2017-07-25 发布日期:2018-07-25
  • 通讯作者: 方志刚(1964—),男,辽宁鞍山人,辽宁科技大学教授,博士。E-mail:lnfzg@163.com
  • 基金资助:
    国家自然科学基金重点项目(51634004);国家级大学生创新创业训练计划(201710146000277,201710146000355,201610146033);辽宁省大学生创新创业训练计划(201710146000097,201610146044)

DFT Study on the Reactive Activity of Cluster Co5B2

LI Wenbo, FANG Zhigang*, ZHAO Zhenning, CHEN Lin, XU Shihao,HAN Jianming, LIU Qi, CUI Yuandong   

  1. School of Chemical Engineering,University of Science and Technology Liaoning, Anshan Liaoning 114051, China
  • Online:2017-07-25 Published:2018-07-25

摘要: 采用密度泛函理论对团簇Co5B2在B3LYP/Lan12dz水平下进行研究,在考虑电子的自旋多重度的情况下对其结构、能量和前线轨道研究后得出以下结论:团簇Co5B2的8个稳定构型在二、四重态下具有3种结构,以单“帽”四角双锥结构为主;构型1(2)能量最低,结合能最大,结构最稳定;团簇Co5B2的HOMO-LUMO图、能隙差和库普曼斯定理一致说明二重态构型的反应活性随能量的升高而增强,其中构型4(2)最强,四重态构型除1(4)外,其余构型随能量的升高反应活性降低,其中构型2(4)的反应活性最强。

关键词: 密度泛函理论, 结构, 能量, HOMO-LUMO, 反应活性

Abstract: After the structure, energy and frontier orbitals of cluter Co5B2 have been systematically investigated by using the density functional theory method at B3LYP/Lan12dz level, the following conclusions were obtained: there are three types of structure from 8 optimized configurations of Co5B2 with spin doublet and quartet states, and the most stable configuration is monocapped quadrilateral dipyramid. The configuration 1(2) is the most stable with the minimum energy and the maximum binding energy. The consistent conclusion obtained from three aspects, the HOMO-LUMO of cluter, the HOMO-LUMO orbital energy gap and the Koopman’s theorem is that the reactive activity of configuration from spin doublet state is growing with the increase of energy and that of configuration 4(2) is the strongest, while the reactive activity of configuration from spin quartet state is decreasing with the increase of energy except 1(4) and that of configuration 2(4) is the strongest.

Key words: density functional theory, structure, energy, HOMO-LUMO, reactive activity

中图分类号: 

  • O641.121
[1] XU Dongyan, WANG Haizhen, GUO Qingjie, et al. Catalytic behavior of carbon supported Ni—B, Co—B and Co—Ni—B in hydrogen generation by hydrolysis of KBH4[J]. Fuel Process Tech, 2011, 92(8):1606-1610.
[2] WANG Y D, AI X P, CAO Y L, et al. Exceptional electrochemical activities of amorphous Fe—B and Co—B alloy powders used as high capacity anode materials[J]. Electrochem Commun, 2004, 6(8):780-784.
[3] LIU Xia, ZHAO Gaofeng, GUO Lingju, et al. Structural, electronic, and magnetic properties of MBn (M=Cr, Mn, Fe, Co, Ni, n≤7) clusters[J]. Phys Rev A, 2007, 75(6): 06321.
[4] LI Feng, MA Rui, CAO Bo, et al. Effect of Co-B supporting methods on the hydrogenation of m-chloronitrobenzene over Co-B/CNTs amorphous alloy catalyst[J]. Appl Catal A: Gen, 2016, 514:248-252.
[5] WU Zhijie, GE Shaohui. Facile synthesis of a Co—B nanoparticle catalyst for efficient hydrogen generation via borohydride hydrolysis[J]. Catal Commun, 2011,13(1):40-43.
[6] GAO Peng, YANG Shaoqiang, XUE Zhu, et al. High energy ball-milling preparation of Co—B amorphous alloy with high electrochemical hydrogen storage ability[J]. J Alloys Compd, 2012,539:90-96.
[7] PATEL N, MIOTELLO A. Progress in Co—B related catalyst for hydrogen production by hydrolysis of boron-hydrides a review and the perspectives to substitute noble metals[J]. Int J Hydrogen Energy, 2015,40(3):1429-1464.
[8] CARENCO S, PORTEHAULT D, BOISSIERE C, et al. Nanoscaled metal borides and phosphides: recent developments and perspectives[J]. Chem Rev, 2013,113(10):7981-8065.
[9] VERNEKAR A A, BUGDE S T, TILVE S. Sustainable hydrogen production by catalytic hydrolysis of alkaline sodium borohydride solution using recyclable Co—Co2B and Ni—Ni—B nanocomposites[J]. Int J Hydrogen Energy, 2012, 37(1): 327-334.
[10] HAN Yan, WANG Yijing, WANG Yaping, et al. Characterization of CoB-silica nanochains hydrogen storage composite prepared by in-situ reduction[J]. Int J Hydrogen Energy,2010,35(15):8177-8181.
[11] LIU Yi, WANG Yijing, XIAO Lingling, et al. Structure and electrochemical behaviors of a series of Co—B alloys[J]. Electrochim Acta, 2008, 53(5):2265-2271.
[12] WU Chuan, BAI Ying, WANG Xin, et al. Comparisons of Co—B alloys synthesized via different methods for secondary alkaline batteries[J]. Solid State Ionics, 2008, 179(21): 924-927.
[13] TONG D G, ZENG X L, CHU W, et al. Magnetically recyclable hollow Co—B nanospindles as catalysts[J]. J Mater Sci, 2010, 45(11):2862-2867.
[14] YOUSEF A, BROOKS R M, EL-HALWANY M M, et al. A novel and chemical stable Co—B nanoflakes-like structure supported over titanium dioxide nanofibers used as catalyst for hydrogen generation from ammonia borane complex[J].Int J Hydrogen Energy,2016,41(1):285-293.
[15] SHEN Xiaochen, DAI Min, GAO Ming, et al. Solvent effects in the synthesis of CoB catalysts on hydrogen generation from hydrolysis of sodium borohydride[J]. Chin J Catal, 2013, 34(5):979-985.
[16] CHENG Jun, XIANG Cuili, ZOU Yongjin, et al. Highly active nanoporous Co—B—TiO2 framework for hydrolysis of NaBH4[J]. Ceram Int,2015,41(1):899-905.
[17] OZDEMIR E. Enhanced catalytic activity of Co—B glassy carbon and Co—B graphite catalysts for hydrolysis of sodium borohydride[J]. Int J Hydrogen Energy,2015,40(40):14045-14051.
[18] KRISHNA R, FERNANDES D M, DIAS C, et al. Facile synthesis of novel Co-B@NiRGO nanocomposite a cost effective catalyst for improved hydrogen generation with enhanced electrochemical activity[J]. Int J Hydrogen Energy, 2016, 41(27): 11498-11509.
[19] LI Hexing, CHEN Xingfan, WANG Minghui, et al. Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over an ultrafine Co—B amorphous alloy catalyst[J]. Appl Catal A: Gen, 2002,225(1):117-130.
[20] SHEN Jiahuai, CHEN Yuwen. Catalytic properties of bimetallic NiCoB nanoalloy catalysts for hydrogenation of p-chloronitrobenzene[J]. J Mol Catal A: Chem,2007,273(1):265-276.
[21] ZENG Qingsong, CHEN Wenka, ZHANG Yongfan, et al. Density functional theory study of CO catalytic oxidation on Co2B2TiO2 (110) surface[J]. J Nat Gas Chem,2010,19(3):300-306.
[22] TAI T B, NGUYEN M T. Thermochemical properties, electronic structure and bonding of mixed lithium boron clusters (BnLi, n=1-18) and their anions[J].Chem Phys, 2010, 375(1):35-45.
[23] JIA Jianfeng, MA Lijuan, WANG Jianfeng, et al. Stuctures and stabilities of ScBn (n=1-112) clusters: an ab initio investigation[J]. J Mol Model, 2013,19(8):3255-3261.
[24] YAO Jiangang, WANG Xianwei, WANG Yuanxu. A theoretical study on structural and electronic properties of Zr-doped B clusters: ZrBn (n=1-12)[J]. Chem Phys, 2008, 351(1):1-6.
[25] JIA Jianfeng, LI Xiaorong, LI Yanan, et al. Density functional theory investigation on the structure and stability of Sc2Bn(n=1-10) clusters[J].Comput Theor Chem,2014,1027:128-134.
[26] LV Jin, ZHANG Fuqiang, XU Xiaohong, et al. Structure, stability, and magnetism of (CoRh)n(n≤5) alloy clusters: Density-function theory investigations[J]. Chem Phys, 2009,363(1):65-71.
[27] LIU Xia, ZHAO Guofeng, GUO Lingju, et al. Structural, electronic, and magnetic properties of MBn (M=Cr, Mn, Fe, Co, Ni, n≤7) clusters[J].Phys Rev:A,2007,75(6):0632011-0632016.
[28] BECK A. Density-functional thermochemistry. Ⅲ. The role of exact exchange[J]. J Chem Phys, 1993, 98(7):5648-5652.
[29] TONG Dongge, CHU Wei, LUO Yongyue, et al. Effect of crystallinity on the catalytic performance of amorphous Co—B particles prepared from cobalt nitrate and potassium borohydride in the cinnamaldehyde hydrogenation[J]. J Mol Catal A: Chem,2007,265(1):195-204.
[30] HAY P J, WADT W R. An initio effective core potentials for molecular calculations[J]. J Chem Phys,1985, 82(1):270-283.
[31] SASTRI V S, PERUMAREDDI J R. Molecular orbital theoretical studies of some organic corrosion inhibitors[J]. Corros Sci, 1997,53(8):617-622.
[32] CHANDRASEKARAN K, KUMAR R T. Structural, spectral, thermodynamical, NLO,HOMO,LUMO and NBO analysis of fluconazole[J]. Spectrochim Acta Part A,2015,150:974-991.
[33] SUHASINI M,SAILATHA E,GUNASEKARAN S, et al. Vibrational and electronic investigations, thermodynamic parameters, HOMO and LUMO analysis on Lornoxicam by density functional theory[J]. J Mol Struct, 2015,1100:116-128.
[34] ZHAN Changguo, NICHOLS J A, DIXON D A. Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies[J].J Phys Chem:A, 2003,107(20):4184-4195.
[1] 高辉, 方江平, 刘丽娟, 刘禧. 西藏原始林芝云杉林的空间结构与环境的关系[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 95-103.
[2] 谢婷婷, 谢瑶, 倪青玲. 含有机膦金炔三氮唑配合物的合成表征及晶体结构[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 92-99.
[3] 佘连兵, 高云龙. 无界域上非自治Navier-Stokes方程的后向紧动力学[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 41-46.
[4] 张晓晓, 王苗苗, 冯书珍, 邱虎森, 盖爽爽, 赵蕾, 胡亚军, 何寻阳, 陆祖军. 岩性与植被类型对喀斯特土壤AM真菌群落的影响[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 158-167.
[5] 聂煜, 廖祥文, 魏晶晶, 杨定达, 陈国龙. 基于深度自动编码器的多标签分类研究[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 71-79.
[6] 李历红, 方志刚, 赵振宁, 陈林, 韩建铭, 崔远东, 马填棋, 姜雨晨. 团簇Ni3CoP催化析氢活性研究[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 165-172.
[7] 孟春梅, 陆世银, 梁永红, 莫肖敏, 李卫东, 黄远洁, 成晓静, 苏志恒, 郑华. 岩黄连总碱诱导肝星状细胞凋亡和自噬的电镜实验研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 76-79.
[8] 王梦飞, 黄松. 广西西江经济带的城市旅游经济空间关联研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 144-150.
[9] 袁伟强,宋树祥,程 洋,张勇敢. 超宽带微带带通滤波器的设计[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 32-38.
[10] 徐诗浩, 方志刚, 韩建铭, 赵振宁, 陈林, 刘琪. 团簇V3B2成键及磁学性质研究[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 89-96.
[11] 葛丽娜. 基于k-同构和局部随机化的隐私保护方法[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 1-8.
[12] 汪嘉骎, 邓国和. 基于仿射跳扩散模型的利率衍生品定价[J]. 广西师范大学学报(自然科学版), 2016, 34(3): 74-85.
[13] 张成刚, 方志刚, 赵振宁, 王茂鑫, 刘继鹏, 徐诗浩, 韩建铭. 团簇CoFe2B2稳定性的密度泛涵理论研究[J]. 广西师范大学学报(自然科学版), 2016, 34(3): 86-94.
[14] 彭国清, 郭屹立, 韦素娟, 陈海玲, 何运林, 唐绍清. 弄岗淡黄金花茶种群年龄结构与空间分布格局[J]. 广西师范大学学报(自然科学版), 2016, 34(3): 138-143.
[15] 黄学仁, 赵志愿, 蒋毅民. 4′-(4-苯甲酸)-2,2′:6′,2″-三联吡啶锌配位聚合物的合成、晶体结构及荧光性质研究[J]. 广西师范大学学报(自然科学版), 2016, 34(2): 98-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发