|
广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (1): 120-127.doi: 10.16088/j.issn.1001-6600.2023032403
胡凯伦, 陈敏, 罗宏*
HU Kailun, CHEN Min, LUO Hong*
摘要: 本文考虑磁流体方程的长时间行为,研究其全局吸引子的正则性。首先,利用分数次空间的嵌入定理和全局吸引子的存在性定理分别得到该方程在空间H1和H2中存在全局吸引子;然后,利用迭代方法、线性算子半群的正则性理论和全局吸引子的存在性定理, 证明该方程在任意Sobolev空间Hk(其中k≥0)中存在全局吸引子, 并以Hk-范数吸引空间Hk中的任意有界集。
中图分类号: O175
[1] ALFVÉN H. Existence of electromagnetic-hydrodynamic waves[J]. Nature, 1942, 150(3805): 405-406. [2] SERMANGE M, TEMAM R. Some mathematical questions related to the MHD equations[J]. Communications on Pure and Applied Mathematics, 1983, 36(5): 635-664. [3] 张尊尊. 不可压MHD方程组的一个条件正则性准则[J]. 温州大学学报(自然科学版), 2023, 44(1): 21-28. [4] REN X X, WU J H, XIANG Z Y, et al. Global existence and decay of smooth solution for the 2-D MHD equations without magnetic eiffusion[J]. Journal of Functional Analysis, 2014, 267(2): 503-541. [5] BOARDMAN N, LIN H X, WU J H. Stabilization of a background magnetic field on a 2 dimensional magnetohydrodynamic flow[J]. SIAM Journal on Mathematical Analysis, 2020, 52(5): 5001-5035. [6] LIN H X, JI R H, WU J H, et al. Stability of perturbations near a back-ground magnetic field of the 2D incompressible MHD equations with mixed partial dissipation[J]. Journal of Functional Analysis, 2020, 279(2): 108519. [7] ZHAO J F. Global regularity for solutions to 2D generalized MHD equations with multiple exponential upper bound uniformly in time[J]. Journal of Mathematical Analysis and Applications, 2022, 514(1): 126306. [8] 佘连兵, 高云龙. 无界域上非自治Navier-Stokes方程的后向紧动力学[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 41-46. [9] 张杰, 李晓军. 无界域上非自治随机反应扩散方程一致随机吸引子的存在性[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 134-143. [10] YUAN Z Q, GUO L, LIN G G. Global attractors and dimension estimation of the 2D generalized MHD system with extra force[J]. Applied Mathematics, 2015, 6(4): 724-736. [11] AI C F, TAN Z, ZHOU J F. Global well-posedness and existence of uniform attractor for magnetohydrodynamic equations[J]. Mathematical Methods in the Applied Sciences, 2020, 43(12): 7045-7069. 635-664. [12] CATANIA D. Global attractor and determining modes for a hyperbolic MHD turbulence model[J]. Journal of Turbulence, 2011, 12(12): 1-20. [13] 柴晓娟. 几个流体动力学方程的渐近行为[D]. 合肥:安徽大学, 2016. [14] RUAN T W, JIANG Q, LUO H. Regularity of global attractor for the damped Navier-Stokes equations[J]. Mathematica Applicate, 2020, 33(2): 443-448. [15] 马天. 偏微分方程理论与方法[M]. 北京: 科学出版社, 2011: 158-186. [16] 朱凯旋, 孙涛, 谢永钦. 带有分布导数的反应扩散方程在Rn中全局吸引子的存在性[J]. 数学物理学报, 2023, 43(1): 82-92. [17] PAZY A. Semigroups of linear operators and applications to partial differential equations[M]. New York: Springer-Verlag, 1983. [18] LUO H, PU Z L. Existence and regularity of solutions to model for liquid mixture of 3He-4he[J]. Acta Mathematica Scientia, 2012, 32(06): 2161-2175. [19] 潘娇娇, 罗宏. 高阶Allen-Cahn系统吸引子的正则性[J]. 四川师范大学学报(自然科学版), 2021, 44(3): 323-328. [20] ANDERSON D M, MCFADDEN G B, WHEELER A A. Diffuse-interface methods in fluid mechanics[J]. Annual Review of Fluid Mechanics, 1998, 30(1): 139-165. [21] TEMAM R. Infinite-dimensional dynamical systems in mechanics physics[M]. New York: Springer-Verlag, 1997: 10-15. [22] KATO T, PONCE G. Commutator estimates and the Euler and Navier-Stokes equations[J]. Communications on Pure and Applied Mathematics, 1988, 41(7): 891-907. |
[1] | 韦扬江, 梁艺耀, 唐高华, 苏磊磊, 陈蔚凝. 模n高斯整数环的商环的立方映射图[J]. 广西师范大学学报(自然科学版), 2016, 34(3): 53-61. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |