|
广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (1): 128-138.doi: 10.16088/j.issn.1001-6600.2023032404
王永杰, 高兴慧*, 房萌凯
WANG Yongjie, GAO Xinghui*, FANG Mengkai
摘要: 在Hilbert空间中提出一种新的关于求解伪单调变分不等式问题的Tseng外梯度算法。在适当条件下,证明由此算法生成的迭代序列强收敛于伪单调变分不等式问题的解集与拟非扩张映射不动点集的公共元,并用数值实验说明所提算法的有效性。
中图分类号: O177.91
[1] AUBIN J P, EKELAND I. Applied nonlinear analysis[M]. New York: Wiley, 1984. [2] ZHOU H Y, QIN X L. Fixed points of nonlinear operators[M]. Berlin: De Gruyter, 2020. [3] KONNOV I. Combined relaxation methods for variational inequalities[M]. Berlin: Springer, 2001. [4] XU H K. Iterative algorithms for nonlinear operators[J]. Journal of the London Mathematical Society, 2002, 66(1): 240-256. [5] TAN B, FAN J J, QIN X L. Inertial extragradient algorithms with non-monotonic step sizes for solving variational inequalities and fixed point problems[J]. Advances in Operator Theory, 2021, 6(4): 61. [6] YEKINI S, OLANIYI S I. Strong convergence result for monotone variational inequalities[J]. Numerical Algorithms, 2017, 76: 259-282. [7] NOOR M A, On iterative methods for solving a system of mixed variational inequalities[J]. Applicable Analysis, 2008, 87(1): 99-108. [8] SIBONY M. Méthodes itératives pour les équations et inéquations aux dérivees partielles on linéaires de type monotone[J]. Calcolo, 1970, 7(1): 65-183. [9] KORPELEVICH G M. The extragradient method for finding saddle points and other problems[J]. Matecon, 1976, 12(4): 747-756. [10] CENSOR Y, GIBALI A, REICH S. The subgradient extragradient method for solving variational inequalities in Hilbert space[J]. Journal of Optimization Theory and applications, 2011, 148(2): 318-335. [11] TSENG P. A modified forward-backward splitting method for maximal monotone mappings[J]. SIAM Journal on Control and Optimization, 2000, 38(2): 431-446. [12] FAN J J, QIN X L. Weak and strong convergence of inertial Tseng’s extragradient algorithms for solving variational inequality problems[J]. Optimization, 2021, 70(5/6): 1195-1216. [13] THONG D V, HIEU D V. Modified Tseng’s extragradient algorithms for variational inequality problems[J]. Journal of Fixed Point Theory and Applications, 2018, 20(4): 152. [14] 胡绍涛,王元恒,蔡钢.Hilbert空间上关于伪单调变分不等式问题的新Tseng外梯度算法[J/OL].数学学报(中文版):1-10[2023-03-16]. http://kns.cnki.net/kcms/detail/11.2038.O1.20220613.0916.004.html. [15] THONG D V, VUONG P T. Modified Tseng’s extragradient methods for solving pseudo-monotone variational inequalities[J]. Optimization, 2019, 68(11): 2202-2226. [16] 谢忠兵,蔡钢,李肖肖,等.Hilbert空间中求解伪单调变分不等式的自适应次梯度外梯度法[J].数学学报(中文版),2023,66(4): 693-706. [17] 刘丽平,彭建文.求解变分不等式和不动点问题的公共元的修正次梯度外梯度算法[J].数学物理学报,2022,42(5):15-17-1536. [18] 杨静,龙宪军.关于伪单调变分不等式与不动点问题的新投影算法[J].数学物理学报,2022,42(3):904-919. [19] 郭丹妮,蔡钢.变分不等式和不动点问题的新迭代算法[J].数学学报(中文版),2022,65(1):77-88. [20] 蔡钢.Hilbert空间中关于变分不等式问题和不动点问题的粘性隐式中点算法[J].数学物理学报,2020, 40(2):395-407. [21] ZHAO T Y, WANG D Q, CENG L C, et al. Quasi-inertial Tseng’s extragradient algorithms for pseudomonotone variational inequalities and fixed point problems of quasi-nonexpansive operators[J]. Numerical Functional Analysis and Optimization, 2021, 42(1): 69-90. [22] DIZA J B, METCALF F T. On the set of subsequential limit points of successive approximations[J]. Transactions of the American Mathematical Society, 1969, 135: 459-485. [23] THONG D V, HIEU D V. Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems[J]. Numerical Algorithms, 2019, 80(4): 1283-1307. [24] GOEBEL K, REICH S. Uniform convexity,hyperbolic geometry,and nonexpansive mappings[M]. New York: Marcel Dekker, 1983. [25] MAINGÉ P E. Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization[J]. Set-Valued Analysis, 2008, 16(7): 899-912. [26] YANG J, LIU H W. Strong convergence result for solving monotone variational inequalities in Hilbert space[J]. Numerical Algorithms, 2019, 80(3): 741-752. [27] BLUM E, OETTLI W. From optimization and variational inequalities to equilibrium problems[J]. Mathematics Student, 1994, 63(1/2/3/4): 123-145. [28] KINDERLEHRER D, STAMPACCHIA G. An introduction to variational inequalities and their applications[M]. Philadelphia: Society for Industrial and Apptied Mathematics, 1980. [29] LIU L Y, QIN X L. Strong convergence theorems for solving pseudo-monotone variational inequality problems and applications[J]. Optimization, 2022, 71(12): 3603-3626. |
[1] | 徐紫文. 非单调变分不等式问题的双投影算法研究[J]. 广西师范大学学报(自然科学版), 2020, 38(3): 52-58. |
[2] | 朱娅萍, 屈国荣, 范江华. 不动点指数法研究拟变分不等式解的存在性[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 79-85. |
[3] | 王佳玉. 有限维空间中广义混合变分不等式的近似-似投影算法[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 86-93. |
[4] | 唐国吉,赵婷,何登旭. 扰动广义混合变分不等式的可解性[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 76-83. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |