广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (1): 128-138.doi: 10.16088/j.issn.1001-6600.2023032404

• 研究论文 • 上一篇    下一篇

伪单调变分不等式解集与拟非扩张映射不动点集公共元的强收敛定理

王永杰, 高兴慧*, 房萌凯   

  1. 延安大学 数学与计算机科学学院,陕西 延安 716000
  • 收稿日期:2023-03-24 修回日期:2023-06-02 出版日期:2024-01-25 发布日期:2024-01-19
  • 通讯作者: 高兴慧(1975—),女,陕西横山人,延安大学教授。E-mail:yadxgaoxinghui@163.com
  • 基金资助:
    国家自然科学基金(61866038);国家级大学生创新训练计划项目(202210719022)

Strong Convergence Theorem for Pseudomonotonic Variational Inequality Solution Sets and Quasi-non-expansionary Mapping Fixed Point Sets Common Elements

WANG Yongjie, GAO Xinghui*, FANG Mengkai   

  1. School of Mathematics and Computer Science, Yan’an University, Yan’an Shaanxi 716000, China
  • Received:2023-03-24 Revised:2023-06-02 Online:2024-01-25 Published:2024-01-19

摘要: 在Hilbert空间中提出一种新的关于求解伪单调变分不等式问题的Tseng外梯度算法。在适当条件下,证明由此算法生成的迭代序列强收敛于伪单调变分不等式问题的解集与拟非扩张映射不动点集的公共元,并用数值实验说明所提算法的有效性。

关键词: Hilbert空间, 变分不等式, 伪单调, 次梯度外梯度算法, 强收敛

Abstract: A new Tseng outer gradient algorithm for solving pseudomonotonic variational inequality problems is proposed in Hilbert space. Under appropriate conditions, it is proved that the iterative sequence generated by the algorithm strongly converges to the common element of the solution set of pseudomonotonic variational inequality problem and the set of fixed points of the quasi-non-expansion map, and numerical experiments are given to illustrate the effectiveness of the proposed algorithm.

Key words: Hilbert space, variational inequality, pseudo-monotony, subgradient external gradient algorithm, strong convergence

中图分类号:  O177.91

[1] AUBIN J P, EKELAND I. Applied nonlinear analysis[M]. New York: Wiley, 1984.
[2] ZHOU H Y, QIN X L. Fixed points of nonlinear operators[M]. Berlin: De Gruyter, 2020.
[3] KONNOV I. Combined relaxation methods for variational inequalities[M]. Berlin: Springer, 2001.
[4] XU H K. Iterative algorithms for nonlinear operators[J]. Journal of the London Mathematical Society, 2002, 66(1): 240-256.
[5] TAN B, FAN J J, QIN X L. Inertial extragradient algorithms with non-monotonic step sizes for solving variational inequalities and fixed point problems[J]. Advances in Operator Theory, 2021, 6(4): 61.
[6] YEKINI S, OLANIYI S I. Strong convergence result for monotone variational inequalities[J]. Numerical Algorithms, 2017, 76: 259-282.
[7] NOOR M A, On iterative methods for solving a system of mixed variational inequalities[J]. Applicable Analysis, 2008, 87(1): 99-108.
[8] SIBONY M. Méthodes itératives pour les équations et inéquations aux dérivees partielles on linéaires de type monotone[J]. Calcolo, 1970, 7(1): 65-183.
[9] KORPELEVICH G M. The extragradient method for finding saddle points and other problems[J]. Matecon, 1976, 12(4): 747-756.
[10] CENSOR Y, GIBALI A, REICH S. The subgradient extragradient method for solving variational inequalities in Hilbert space[J]. Journal of Optimization Theory and applications, 2011, 148(2): 318-335.
[11] TSENG P. A modified forward-backward splitting method for maximal monotone mappings[J]. SIAM Journal on Control and Optimization, 2000, 38(2): 431-446.
[12] FAN J J, QIN X L. Weak and strong convergence of inertial Tseng’s extragradient algorithms for solving variational inequality problems[J]. Optimization, 2021, 70(5/6): 1195-1216.
[13] THONG D V, HIEU D V. Modified Tseng’s extragradient algorithms for variational inequality problems[J]. Journal of Fixed Point Theory and Applications, 2018, 20(4): 152.
[14] 胡绍涛,王元恒,蔡钢.Hilbert空间上关于伪单调变分不等式问题的新Tseng外梯度算法[J/OL].数学学报(中文版):1-10[2023-03-16]. http://kns.cnki.net/kcms/detail/11.2038.O1.20220613.0916.004.html.
[15] THONG D V, VUONG P T. Modified Tseng’s extragradient methods for solving pseudo-monotone variational inequalities[J]. Optimization, 2019, 68(11): 2202-2226.
[16] 谢忠兵,蔡钢,李肖肖,等.Hilbert空间中求解伪单调变分不等式的自适应次梯度外梯度法[J].数学学报(中文版),2023,66(4): 693-706.
[17] 刘丽平,彭建文.求解变分不等式和不动点问题的公共元的修正次梯度外梯度算法[J].数学物理学报,2022,42(5):15-17-1536.
[18] 杨静,龙宪军.关于伪单调变分不等式与不动点问题的新投影算法[J].数学物理学报,2022,42(3):904-919.
[19] 郭丹妮,蔡钢.变分不等式和不动点问题的新迭代算法[J].数学学报(中文版),2022,65(1):77-88.
[20] 蔡钢.Hilbert空间中关于变分不等式问题和不动点问题的粘性隐式中点算法[J].数学物理学报,2020, 40(2):395-407.
[21] ZHAO T Y, WANG D Q, CENG L C, et al. Quasi-inertial Tseng’s extragradient algorithms for pseudomonotone variational inequalities and fixed point problems of quasi-nonexpansive operators[J]. Numerical Functional Analysis and Optimization, 2021, 42(1): 69-90.
[22] DIZA J B, METCALF F T. On the set of subsequential limit points of successive approximations[J]. Transactions of the American Mathematical Society, 1969, 135: 459-485.
[23] THONG D V, HIEU D V. Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems[J]. Numerical Algorithms, 2019, 80(4): 1283-1307.
[24] GOEBEL K, REICH S. Uniform convexity,hyperbolic geometry,and nonexpansive mappings[M]. New York: Marcel Dekker, 1983.
[25] MAINGÉ P E. Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization[J]. Set-Valued Analysis, 2008, 16(7): 899-912.
[26] YANG J, LIU H W. Strong convergence result for solving monotone variational inequalities in Hilbert space[J]. Numerical Algorithms, 2019, 80(3): 741-752.
[27] BLUM E, OETTLI W. From optimization and variational inequalities to equilibrium problems[J]. Mathematics Student, 1994, 63(1/2/3/4): 123-145.
[28] KINDERLEHRER D, STAMPACCHIA G. An introduction to variational inequalities and their applications[M]. Philadelphia: Society for Industrial and Apptied Mathematics, 1980.
[29] LIU L Y, QIN X L. Strong convergence theorems for solving pseudo-monotone variational inequality problems and applications[J]. Optimization, 2022, 71(12): 3603-3626.
[1] 徐紫文. 非单调变分不等式问题的双投影算法研究[J]. 广西师范大学学报(自然科学版), 2020, 38(3): 52-58.
[2] 朱娅萍, 屈国荣, 范江华. 不动点指数法研究拟变分不等式解的存在性[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 79-85.
[3] 王佳玉. 有限维空间中广义混合变分不等式的近似-似投影算法[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 86-93.
[4] 唐国吉,赵婷,何登旭. 扰动广义混合变分不等式的可解性[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 76-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李谊纯, 董德信, 王一兵. 北仑河口及其邻近海域物质输运滞留时间研究[J]. 广西师范大学学报(自然科学版), 2015, 33(2): 56 -63 .
[2] 罗云演, 李容正, 李冰, 丁晨旭. 响应面优化多刺绿绒蒿总生物碱提取工艺[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 84 -90 .
[3] 陈美红, 杨翠红, 李传起. 人造地球卫星对地球自转的影响[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 6 -9 .
[4] 陈凤,蒙祖强. 基于BTM和加权K-Means的微博话题发现[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 71 -78 .
[5] 张学良,谭惠丽,白克钊,唐国宁,邓敏艺. 一种体现心肌细胞传导记忆的元胞自动机模型[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 1 -9 .
[6] 徐建闽, 杨招波, 马莹莹. 面向移动瓶颈的高速公路流量控制模型研究[J]. 广西师范大学学报(自然科学版), 2020, 38(3): 1 -10 .
[7] 林海蛟, 张继福, 张云, 胡云峰. 基于大孔吸附树脂先交联后吸附法固定化脂肪酶[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 100 -108 .
[8] 李莉丽, 张兴发, 李元, 邓春亮. 基于高频数据的日频GARCH模型估计[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 68 -78 .
[9] 张汝昌, 邱杰, 王明堂, 陈庆锋. 基于自适应局部特征的蛋白质三维结构分类[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 40 -50 .
[10] 官晓金, 赵珂艺, 刘世玲, 李艺, 于方明, 李春明, 刘可慧. 近30年全球锰污染植物修复研究进展——基于CiteSpace的可视化分析[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 44 -57 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发