广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (4): 200-207.doi: 10.16088/j.issn.1001-6600.2022101901

• 研究论文 • 上一篇    下一篇

桂林植物园鸟类-果实植物互惠网络研究

孙涛1,2, 黄杨1,2, 唐启明3, 汪国海4*, 周岐海1,2*   

  1. 1.珍稀濒危动植物生态和环境保护教育部重点实验室(广西师范大学), 广西桂林 541006;
    2.广西珍稀濒危动物生态学重点实验室(广西师范大学), 广西桂林 541006;
    3.广西喀斯特植物保育与恢复生态学重点实验室(中国科学院广西植物研究所),广西桂林 541006;
    4.广西民族师范学院化学与生物工程学院, 广西崇左 532200
  • 收稿日期:2022-10-19 修回日期:2022-12-28 出版日期:2023-07-25 发布日期:2023-09-06
  • 通讯作者: 周岐海(1976—),男,广西贵港人,广西师范大学教授,博士。E-mail:zhouqh@gxnu.edu.cn
    汪国海(1986—),男,广西乐业人,广西民族师范学院讲师,博士。E-mail:1016729581@qq.com
  • 基金资助:
    国家自然科学基金(32170492, 32270504);广西自然科学基金(2019GXNSFDA245021, 2023GXNSFAA026422);广西民族师范学院科研项目(2021BS002)

Plant-Frugivore Network in Guilin Botanical Garden

SUN Tao1,2, HUANG Yang1,2, TANG Qiming3, WANG Guohai4*, ZHOU Qihai1,2*   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. Guangxi Key Laboratory of Rare and Endangered Animal Ecology (Guangxi Normal University), Guilin Guangxi 541006, China;
    3. Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain (Guangxi Institute of Botany, Chinese Academy of Sciences), Guilin Guangxi 541006, China;
    4. College of Chemistry and Bioengineering, Guangxi Normal University for Nationalities, Chongzuo Guangxi 532200, China
  • Received:2022-10-19 Revised:2022-12-28 Online:2023-07-25 Published:2023-09-06

摘要: 采用样线法和焦点动物扫描法收集桂林植物园内鸟类对果实植物的取食行为数据,通过分析两者间的互惠网络关系,探讨鸟类对果实植物的利用规律及网络参数的季节性变化。结果显示:全年共记录到14种(2目7科)鸟类取食13种(8目11科)植物的果实,取食总频次为2 174次。每种鸟类平均取食(6.57±1.20)种植物的果实,每种植物平均吸引(7.15±0.88)种鸟类取食其果实;网络的互惠连接度(C=0.51)、嵌套度(ωNODF=0.93)和互惠多样性(H2=3.81)较高,而网络的特化性(H′2=0.10)较低。鸟类取食最多的植物为乌蔹莓Cayratia japonica和香樟Cinnamomum camphora;取食植物种类最多的鸟类为黄臀鹎Pycnonotus xanthorrhous、栗背短脚鹎Hemixos castanonotus和绿翅短脚鹎Ixos mcclellandii,均取食13种植物果实。鸟类在秋季和冬季的取食频次占全年总取食频次的比例最大,分别为38.79%和33.15%。秋季鸟类与果实植物间的嵌套度(ωNODF=0.92)和互惠多样性指数(H2=4.78)最大,冬季的连接度最大(C=0.53),而夏季中互惠网络的特化性(H′2=0.27)最大。研究结果表明,城市绿地中的动植物关系存在季节上的复杂多变,网络分析可为研究栖息地变化中生态系统功能状态的变化提供重要信息。

关键词: 互惠网络, 食果鸟类, 果实植物, 季节性

Abstract: Transect and focal animal scanning method were used to collect the birds’ feeding behavior on fruit plants in Guilin Botanical. The information of the interaction relationship between them were analyze to discuss the utilization rule of birds on fruit plants and the seasonal changes of network parameters. 2 174 interactions events were recorded between 14 bird species (2 orders and 7 families) and 13 plant species (8 orders and 11 families) throughout the year. Each plant species interacted with 7.15±0.88 birds, and each bird species interacted with 6.57±1.20 plant species. The interaction connectance (C=0.51), weighted nestedness (0.93) and interaction diversity (H2=3.81) of the network were higher, while the specialization (H2=0.10) was lower. Cayratia japonica and Cinnamomum camphora were the most consumed by birds, while Pycnonotus xanthorrhus, Hemixos castanonotus and Ixos mcclellandii are the bird species that consumed most of the fruit plants, including the 13 plant species. The feeding frequency of birds in autumn (38.79%) and winter (33.15%) accounts for the largest proportion of the total annual feeding frequency. The weighted nestedness (ωNODF=0.92) and interaction diversity (H2=4.78) between birds and fruit plants is the largest in autumn, the largest connectance (C=0.53) in winter, and the largest specialization (H2=0.27) in summer. The results shows that the interaction relationship between animals and plants in urban green space can be complex and variable according to different seasons. The network analysis can provide important information for studying the changes of ecosystem function state in rapidly changing habitats.

Key words: interaction network, frugivorous bird, fruit plant, seasonality

中图分类号:  Q948.122.5

[1] BREGMAN T P, SEKERCIOGLU C H, TOBIAS J A. Global patterns and predictors of bird species responses to forest fragmentation: implications for ecosystem function and conservation[J]. Biological Conservation, 2014, 169: 372-383. DOI: 10.1016/j.biocon.20113.11.024.
[2] MARTIN A E, DESROCHERS A, FAHRIG L. Homogenization of dispersal ability across bird species in response to landscape change[J]. Oikos, 2017, 126(7): 996-1003. DOI: 10.1111/oik.03859.
[3] 何海燕, 王楠, 董路. 北京城市鸟类对食源植物利用规律[J]. 动物学杂志, 2021, 56(4): 491-499. DOI: 10.13859/j.cjz.202104002.
[4] GU H, GOODALE E, CHEN J. Does the role that frugivorous bird species play in seed dispersal networks influence the speed of evolutionary divergence?[J]. Global Ecology and Conservation, 2015, 3: 121-128. DOI: 10.1016/j.gecco.2014.11.012.
[5] OLIVEIRA W L, MEDEIROS M B, SIMON M F, et al. The role of recruitment and dispersal limitation in tree community assembly in Amazonian forests[J]. Plant Ecology & Diversity, 2018, 11(1): 1-12. DOI: 10.1080/17550874.2018.1474960.
[6] PETERS V E, CARLO T A, MELLO M A R, et al. Using plant-animal interactions to inform tree selection in tree-based agroecosystems for enhanced biodiversity[J]. BioScience, 2016, 66(12): 1046-1056. DOI: 10.1093/biosci/biw140.
[7] DELMAS E, BESSON M, BRICE M H, et al. Analysing ecological networks of species interactions[J]. Biological Reviews of the Cambridge Philosophical Sociely, 2019, 94(1): 16-36. DOI: 10.1111/brv.12433.
[8] CRUZ J C, RAMOS J A, SILVA L P, et al. Seed dispersal networks in an urban novel ecosystem[J]. European Journal of Forest Research, 2013, 132(5): 887-897. DOI: 10.1007/s10342-013-0722-1.
[9] ZIETSMAN M Y, MONTALDO N H, DEVOTO M. Plant-frugivore interactions in an urban nature reserve and its nearby gardens[J]. Journal of Urban Ecology, 2019, 5(1): juz021. DOI: 10.1093/jue/juz021.
[10] RODEWALD A D, ROHR R P, FORTUNA M A, et al. Community-level demographic consequences of urbanization: an ecological network approach[J]. Journal of Animal Ecology, 2014, 83(6): 1409-1417. DOI: 10.1111/1365-2656.12224.
[11] MUBAMBA S, NDUNA N, SIACHOONO S, et al. Plant-frugivore networks are robust to species loss even in highly built-up urban ecosystems[J]. Oecologia, 2022, 199(3): 637-648. DOI: 10.1007/s00442-022-05213-9.
[12] CORRAL A, VALÉRIO L M, CHEUNG K C, et al. Plant-bird mutualistic interactions can contribute to the regeneration of forest and non-forest urban patches in the Brazilian Cerrado[J]. Urban Ecosystems, 2021, 24(1): 205-213. DOI: 10.1007/s11252-020-01029-8.
[13] ZHANG M Y, LU C H, HAN Q, et al. Structure and characteristics of plant-frugivore network in an urban park: a case study in Nanjing Botanical Garden Mem. Sun Yat-Sen[J]. Diversity, 2022, 14(2): 71. DOI: 10.3390/d14020071.
[14] DEHLING D M, JORDANO P, SCHAEFER H M, et al. Morphology predicts species’ functional roles and their degree of specialization in plant-frugivore interactions[J]. Proceedings of the Royal Society B: Biological Sciences, 2016, 283(1823): 20152444. DOI: 10.1098/rspb.2015.2444.
[15] GONZALEZ O, LOISELLE B A. Species interactions in an Andean bird-flowering plant network: phenology is more important than abundance or morphology[J]. PeerJ, 2016, 4: e2789. DOI: 10.7717/peerj.2789.
[16] MONTOYA-ARANGO S, ACEVEDO-QUINTERO J F, PARRA J L. Abundance and size of birds determine the position of the species in plant-frugivore interaction networks in fragmented forests[J]. Community Ecology, 2019,20(1): 75-82. DOI: 10.1556/168.2019.20.1.8.
[17] DÁTTILO W, LARA-RODRÍGUEZ N, JORDANO P, et al. Unravelling Darwin's entangled bank: architecture and robustness of mutualistic networks with multiple interaction types[J]. Proceedings of The Royal Society B: Biological Sciences, 2016, 283(1843): 20161564. DOI: 10.1098/rspb.2016.1564.
[18] HERNÁNDEZ-DÁVILA O A, ABORDE J, SOSA V J, et al. Interaction network between frugivorous birds and zoochorous plants in cloud forest riparian strips immersed in anthropic landscapes[J]. Avian Research, 2022, 13: 100046. DOI: 10.1016/j.avrs.2022.100046.
[19] LI W D, ZHU C, GRASS I, et al. Plant-frugivore network simplification under habitat fragmentation leaves a small core of interacting generalists[J]. Communications Biology, 2022, 5(1): 1214. DOI: 10.1038/s42003-022-04198-8.
[20] GARCÍA D, DONOSO I, RODRÍGUEZ-PÉREZ J. Frugivore biodiversity and complementarity in interaction networks enhance landscape-scale seed dispersal function[J]. Functional Ecology, 2018, 32(12): 2742-2752. DOI: 10.1111/1365-2435.13213.
[21] COSTA A, HELENO R, DUFRENE Y, et al. Seasonal variation in impact of non-native species on tropical seed dispersal networks[J]. Functional Ecology, 2022, 36(11): 2713-2726. DOI: 10.1111/1365-2435.14171.
[22] 卢清彪, 朱晓珍, 刘长秋, 等. 狭叶坡垒传粉生物学初探[J]. 广西植物, 2020, 40(11): 1628-1637. DOI: 10.11931/guihaia.gxzw201903030.
[23] YAN P B, YANG J. Species diversity of urban forests in China[J]. Urban Forestry & Urban Greening, 2017, 28: 160-166. DOI: 10.1016/j.ufug.2017.09.005.
[24] YANG S, ALBERT R, CARLO T A. Transience and constancy of interactions in a plant-frugivore network[J]. Ecosphere, 2013, 4(12): 1-25. DOI: 10.1890/ES13-00222.1.
[25] RAMOS-ROBLES M, ANDRESEN E, DÍAZ-CASTELAZO C. Temporal changes in the structure of a plant-frugivore network are influenced by bird migration and fruit availability[J]. PeerJ, 2016, 4: e2048. DOI: 10.7717/peerj.2048.
[26] SCHNEIBERG I, BOSCOLO D, DEVOTO M, et al. Urbanization homogenizes the interactions of plant-frugivore bird networks[J]. Urban Ecosystems, 2020, 23(3): 457-470. DOI: 10.1007/s11252-020-00927-1.
[27] SEBASTIÁN-GONZÁLEZ E, DALSGAARD B, SANDEL B, et al. Macroecological trends in nestedness and modularity of seed-dispersal networks: human impact matters[J]. Global Ecology and Biogeography, 2015, 24(3): 293-303. DOI: 10.1111/geb.12270.
[28] DA SILVA F R, MONTOYA D, FURTADO R, et al. The restoration of tropical seed dispersal networks[J]. Restoration Ecology, 2015, 23(6): 852-860. DOI: 10.1111/rec.12244.
[1] 汪国海, 李福燕, 涂文馨, 黄秋婵, 唐创斌, 周岐海. 食果鸟类对秋枫果实的取食和传播研究[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 230-236.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐久成, 李晓艳, 李双群, 张灵均. 基于相容粒的多层次纹理特征图像检索方法[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 186 -187 .
[2] 白德发, 徐欣, 王国长. 函数型数据广义线性模型和分类问题综述[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 15 -29 .
[3] 曾庆樊, 秦永松, 黎玉芳. 一类空间面板数据模型的经验似然推断[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 30 -42 .
[4] 张喜龙, 韩萌, 陈志强, 武红鑫, 李慕航. 面向复杂数据流的集成分类综述[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 1 -21 .
[5] 童凌晨, 李强, 岳鹏鹏. 基于CiteSpace的喀斯特土壤有机碳研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 22 -34 .
[6] 王党树, 仪家安, 董振, 杨亚强, 邓翾. 单周期控制的带纹波抑制单元无桥Boost PFC变换器研究[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 47 -57 .
[7] 喻思婷, 彭靖静, 彭振赟. 矩阵方程的秩约束最小二乘对称半正定解及其最佳逼近[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 136 -144 .
[8] 覃城阜, 莫芬梅. C3-和C4-临界连通图的结构[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 145 -153 .
[9] 阴玉栋, 柯善喆, 黄家艳, 邓梦湘, 刘观艳, 程克光. 1,3-二溴丙烷与醇羧酸和胺一锅法生成烯丙基化合物[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 154 -161 .
[10] 杜丽波, 李金玉, 张晓, 李永红, 潘卫东. 毛红椿皮的化学成分及生物活性研究[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 162 -172 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发