|
广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (4): 200-207.doi: 10.16088/j.issn.1001-6600.2022101901
孙涛1,2, 黄杨1,2, 唐启明3, 汪国海4*, 周岐海1,2*
SUN Tao1,2, HUANG Yang1,2, TANG Qiming3, WANG Guohai4*, ZHOU Qihai1,2*
摘要: 采用样线法和焦点动物扫描法收集桂林植物园内鸟类对果实植物的取食行为数据,通过分析两者间的互惠网络关系,探讨鸟类对果实植物的利用规律及网络参数的季节性变化。结果显示:全年共记录到14种(2目7科)鸟类取食13种(8目11科)植物的果实,取食总频次为2 174次。每种鸟类平均取食(6.57±1.20)种植物的果实,每种植物平均吸引(7.15±0.88)种鸟类取食其果实;网络的互惠连接度(C=0.51)、嵌套度(ωNODF=0.93)和互惠多样性(H2=3.81)较高,而网络的特化性(H′2=0.10)较低。鸟类取食最多的植物为乌蔹莓Cayratia japonica和香樟Cinnamomum camphora;取食植物种类最多的鸟类为黄臀鹎Pycnonotus xanthorrhous、栗背短脚鹎Hemixos castanonotus和绿翅短脚鹎Ixos mcclellandii,均取食13种植物果实。鸟类在秋季和冬季的取食频次占全年总取食频次的比例最大,分别为38.79%和33.15%。秋季鸟类与果实植物间的嵌套度(ωNODF=0.92)和互惠多样性指数(H2=4.78)最大,冬季的连接度最大(C=0.53),而夏季中互惠网络的特化性(H′2=0.27)最大。研究结果表明,城市绿地中的动植物关系存在季节上的复杂多变,网络分析可为研究栖息地变化中生态系统功能状态的变化提供重要信息。
中图分类号: Q948.122.5
[1] BREGMAN T P, SEKERCIOGLU C H, TOBIAS J A. Global patterns and predictors of bird species responses to forest fragmentation: implications for ecosystem function and conservation[J]. Biological Conservation, 2014, 169: 372-383. DOI: 10.1016/j.biocon.20113.11.024. [2] MARTIN A E, DESROCHERS A, FAHRIG L. Homogenization of dispersal ability across bird species in response to landscape change[J]. Oikos, 2017, 126(7): 996-1003. DOI: 10.1111/oik.03859. [3] 何海燕, 王楠, 董路. 北京城市鸟类对食源植物利用规律[J]. 动物学杂志, 2021, 56(4): 491-499. DOI: 10.13859/j.cjz.202104002. [4] GU H, GOODALE E, CHEN J. Does the role that frugivorous bird species play in seed dispersal networks influence the speed of evolutionary divergence?[J]. Global Ecology and Conservation, 2015, 3: 121-128. DOI: 10.1016/j.gecco.2014.11.012. [5] OLIVEIRA W L, MEDEIROS M B, SIMON M F, et al. The role of recruitment and dispersal limitation in tree community assembly in Amazonian forests[J]. Plant Ecology & Diversity, 2018, 11(1): 1-12. DOI: 10.1080/17550874.2018.1474960. [6] PETERS V E, CARLO T A, MELLO M A R, et al. Using plant-animal interactions to inform tree selection in tree-based agroecosystems for enhanced biodiversity[J]. BioScience, 2016, 66(12): 1046-1056. DOI: 10.1093/biosci/biw140. [7] DELMAS E, BESSON M, BRICE M H, et al. Analysing ecological networks of species interactions[J]. Biological Reviews of the Cambridge Philosophical Sociely, 2019, 94(1): 16-36. DOI: 10.1111/brv.12433. [8] CRUZ J C, RAMOS J A, SILVA L P, et al. Seed dispersal networks in an urban novel ecosystem[J]. European Journal of Forest Research, 2013, 132(5): 887-897. DOI: 10.1007/s10342-013-0722-1. [9] ZIETSMAN M Y, MONTALDO N H, DEVOTO M. Plant-frugivore interactions in an urban nature reserve and its nearby gardens[J]. Journal of Urban Ecology, 2019, 5(1): juz021. DOI: 10.1093/jue/juz021. [10] RODEWALD A D, ROHR R P, FORTUNA M A, et al. Community-level demographic consequences of urbanization: an ecological network approach[J]. Journal of Animal Ecology, 2014, 83(6): 1409-1417. DOI: 10.1111/1365-2656.12224. [11] MUBAMBA S, NDUNA N, SIACHOONO S, et al. Plant-frugivore networks are robust to species loss even in highly built-up urban ecosystems[J]. Oecologia, 2022, 199(3): 637-648. DOI: 10.1007/s00442-022-05213-9. [12] CORRAL A, VALÉRIO L M, CHEUNG K C, et al. Plant-bird mutualistic interactions can contribute to the regeneration of forest and non-forest urban patches in the Brazilian Cerrado[J]. Urban Ecosystems, 2021, 24(1): 205-213. DOI: 10.1007/s11252-020-01029-8. [13] ZHANG M Y, LU C H, HAN Q, et al. Structure and characteristics of plant-frugivore network in an urban park: a case study in Nanjing Botanical Garden Mem. Sun Yat-Sen[J]. Diversity, 2022, 14(2): 71. DOI: 10.3390/d14020071. [14] DEHLING D M, JORDANO P, SCHAEFER H M, et al. Morphology predicts species’ functional roles and their degree of specialization in plant-frugivore interactions[J]. Proceedings of the Royal Society B: Biological Sciences, 2016, 283(1823): 20152444. DOI: 10.1098/rspb.2015.2444. [15] GONZALEZ O, LOISELLE B A. Species interactions in an Andean bird-flowering plant network: phenology is more important than abundance or morphology[J]. PeerJ, 2016, 4: e2789. DOI: 10.7717/peerj.2789. [16] MONTOYA-ARANGO S, ACEVEDO-QUINTERO J F, PARRA J L. Abundance and size of birds determine the position of the species in plant-frugivore interaction networks in fragmented forests[J]. Community Ecology, 2019,20(1): 75-82. DOI: 10.1556/168.2019.20.1.8. [17] DÁTTILO W, LARA-RODRÍGUEZ N, JORDANO P, et al. Unravelling Darwin's entangled bank: architecture and robustness of mutualistic networks with multiple interaction types[J]. Proceedings of The Royal Society B: Biological Sciences, 2016, 283(1843): 20161564. DOI: 10.1098/rspb.2016.1564. [18] HERNÁNDEZ-DÁVILA O A, ABORDE J, SOSA V J, et al. Interaction network between frugivorous birds and zoochorous plants in cloud forest riparian strips immersed in anthropic landscapes[J]. Avian Research, 2022, 13: 100046. DOI: 10.1016/j.avrs.2022.100046. [19] LI W D, ZHU C, GRASS I, et al. Plant-frugivore network simplification under habitat fragmentation leaves a small core of interacting generalists[J]. Communications Biology, 2022, 5(1): 1214. DOI: 10.1038/s42003-022-04198-8. [20] GARCÍA D, DONOSO I, RODRÍGUEZ-PÉREZ J. Frugivore biodiversity and complementarity in interaction networks enhance landscape-scale seed dispersal function[J]. Functional Ecology, 2018, 32(12): 2742-2752. DOI: 10.1111/1365-2435.13213. [21] COSTA A, HELENO R, DUFRENE Y, et al. Seasonal variation in impact of non-native species on tropical seed dispersal networks[J]. Functional Ecology, 2022, 36(11): 2713-2726. DOI: 10.1111/1365-2435.14171. [22] 卢清彪, 朱晓珍, 刘长秋, 等. 狭叶坡垒传粉生物学初探[J]. 广西植物, 2020, 40(11): 1628-1637. DOI: 10.11931/guihaia.gxzw201903030. [23] YAN P B, YANG J. Species diversity of urban forests in China[J]. Urban Forestry & Urban Greening, 2017, 28: 160-166. DOI: 10.1016/j.ufug.2017.09.005. [24] YANG S, ALBERT R, CARLO T A. Transience and constancy of interactions in a plant-frugivore network[J]. Ecosphere, 2013, 4(12): 1-25. DOI: 10.1890/ES13-00222.1. [25] RAMOS-ROBLES M, ANDRESEN E, DÍAZ-CASTELAZO C. Temporal changes in the structure of a plant-frugivore network are influenced by bird migration and fruit availability[J]. PeerJ, 2016, 4: e2048. DOI: 10.7717/peerj.2048. [26] SCHNEIBERG I, BOSCOLO D, DEVOTO M, et al. Urbanization homogenizes the interactions of plant-frugivore bird networks[J]. Urban Ecosystems, 2020, 23(3): 457-470. DOI: 10.1007/s11252-020-00927-1. [27] SEBASTIÁN-GONZÁLEZ E, DALSGAARD B, SANDEL B, et al. Macroecological trends in nestedness and modularity of seed-dispersal networks: human impact matters[J]. Global Ecology and Biogeography, 2015, 24(3): 293-303. DOI: 10.1111/geb.12270. [28] DA SILVA F R, MONTOYA D, FURTADO R, et al. The restoration of tropical seed dispersal networks[J]. Restoration Ecology, 2015, 23(6): 852-860. DOI: 10.1111/rec.12244. |
[1] | 汪国海, 李福燕, 涂文馨, 黄秋婵, 唐创斌, 周岐海. 食果鸟类对秋枫果实的取食和传播研究[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 230-236. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |