广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (4): 189-199.doi: 10.16088/j.issn.1001-6600.2022080108

• 研究论文 • 上一篇    下一篇

LecRKIII.2基因调控拟南芥对非生物胁迫和外源激素的响应

谢道龙1,2#, 邹肖肖1,2#, 李美玲1,2, 游昌乔1,2, 周苹1,2, 肖文君1,2, 郭新红1,2*   

  1. 1.湖南大学重庆研究院, 重庆 400039;
    2.植物功能基因组学与发育调控湖南省重点实验室(湖南大学), 湖南长沙 410082
  • 收稿日期:2022-08-01 修回日期:2022-10-07 出版日期:2023-07-25 发布日期:2023-09-06
  • 通讯作者: 郭新红(1975—),女,湖南娄底人,湖南大学教授,博导。E-mail:gxh@hnu.edu.cn
    #谢道龙和邹肖肖对本文的贡献相同,为共同第一作者。
  • 基金资助:
    国家自然科学基金(31872866);重庆市自然科学基金(2022NSCQ-MSX5788,2022NSCQ-MSX5762);长沙市自然科学基金(kq2202149);湖南省自然科学青年基金(2022JJ40051)

LecRKIII.2 Gene Regulates Response of Arabidopsis thaliana to Abiotic Stress and Exogenous Hormones

XIE Daolong1,2#, ZOU Xiaoxiao1,2#, LI Meiling1,2, YOU Changqiao1,2, ZHOU Ping1,2, XIAO Wenjun1,2, GUO Xinhong1,2*   

  1. 1. Chongqing Research Institute, Hunan University, Chongqing 400039, China;
    2. Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation (Hunan University), Changsha Hunan 410082, China
  • Received:2022-08-01 Revised:2022-10-07 Online:2023-07-25 Published:2023-09-06

摘要: 在拟南芥Arabidopsis thaliana中, 凝集素类受体激酶(lectin receptor-like kinases,LecRKs)包含86个成员,在植物对生物及非生物胁迫反应中起关键作用。AtLecRKIII.2作为LecRKs家族的一员,其具体功能未见报道。本文通过实时定量PCR和三引物法鉴别AtLecRKIII.2基因的过表达植株及纯合缺失突变体。启动子顺式作用元件分析发现,AtLecRKIII.2基因有多种与调控胁迫、激素等反应相关的功能元件。组织表达模式分析表明,AtLecRKIII.2基因于果荚中具有较高的转录水平,茎中的转录水平次之。逆境及激素响应模式分析表明,AtLecRKIII.2基因对外源生长素(3-indoleacetic acid,IAA)、油菜素内酯(brassinolide,BL)、赤霉素(gibberellins,GAs)、PEG8000、高温和低温均具有不同程度的响应。萌发率及根长实验结果表明,NaCl或Mannitol处理后,LecRKIII.2-OE的种子萌发率高于野生型,而lecrkiii.2的种子萌发率低于野生型。用生长素处理后,LecRKIII.2-OE根的伸长被显著抑制,且其体内与生长素应答和运输相关基因的转录水平显著变化。上述研究结果表明,AtLecRKIII.2基因正调控拟南芥对盐胁迫、渗透胁迫的耐受性和涉及根的生长发育。研究结果为进一步深入研究AtLecRKIII.2基因在植物非生物胁迫及激素信号转导中的生理功能提供参考数据。

关键词: 拟南芥, 凝集素类受体激酶, AtLecRKIII.2, 非生物胁迫, 激素

Abstract: In Arabidopsis thaliana, lectin receptor-like kinases (LecRKs) contain 86 members and are widely involved in plant resistance to biotic and abiotic stresses. AtLecRKIII.2 is a member of the LecRKs family and its specific function has not been reported. Here, three-primer method and real-time quantitative PCR are used to identify homozygous deletion mutants and overexpression plants of AtLecRKIII.2 gene. Analysis of promoter cis-acting elements reveals that AtLecRKIII.2 gene has multiple regulatory elements related to stress, hormone and other responses. Tissue expression pattern analysis shows that AtLecRKIII.2 gene has the highest expression in fruit pods, followed by stems. The analysis of adversity and hormone response patterns shows that AtLecRKIII.2 gene has different degrees of response to exogenous hormones (IAA, BL, GA), PEG8000, high temperature and low temperature. The experimental results of germination rate and root length shows that after treated with NaCl or Mannitol, the seed germination rate of LecRKIII.2-OE is higher than that of the wild type, while lecrkiii.2 is lower than that of the wild type. After treated with auxin, the elongation of LecRKIII.2-OE roots is significantly inhibited and the expression level of auxin-related genes in LecRKIII.2-OE is significantly changed. The above research results indicate that the AtLecRKIII.2 gene may positively regulate the tolerance of Arabidopsis to salt stress and osmotic stress and the growth and development of roots. The above results provide reference data for further research of the physiological function of AtLecRKIII.2 gene in plant abiotic stress and hormone signal transduction.

Key words: Arabidopsis thaliana, lectin receptor-like kinases, AtLecRKIII.2, abiotic stress, hormones

中图分类号:  Q943.3

[1] ZHANG H M, ZHU J H, GONG Z Z, et al. Abiotic stress responses in plants[J]. Nature Reviews Genetics, 2021, 23(2): 104-119. DOI: 10.1038/S41576-021-00413-0.
[2] PANDEY S. Plant receptor-like kinase signaling through heterotrimeric G-proteins[J]. Journal of Experimental Botany, 2020, 71(5): 1742-1751. DOI: 10.1093/jxb/eraa016.
[3] WEI X, WANG Y L, ZHANG S, et al. Structural analysis of receptor-like kinase SOBIR1 reveals mechanisms that regulate its phosphorylation-dependent activation[J]. Plant Communication, 2022, 3(2): 100301. DOI: 10.1016/j.xplc.2022.100301.
[4] WANG Z, GOU X P. The first line of defense: Receptor-like protein kinase-mediated stomatal immunity[J]. International Journal of Molecular Sciences, 2021, 23(1): 343. DOI: 10.3390/ijms23010343.
[5] ZHOU H P, XIAO F, ZHENG Y, et al. PAMP-INDUCED SECRETED PEPTIDE 3 modulates salt tolerance through RECEPTOR-LIKE KINASE 7 in plants[J]. Plant Cell, 2022, 34(2): 927-944. DOI: 10.1093/PLCELL/KOAB292.
[6] ULLRICH A, SCHLESSINGER J. Signal transduction by receptors with tyrosine kinase activity[J]. Cell, 1990, 61(2): 203-212. DOI: 10.1016/0092-8674(90)90801-k.
[7] WALKER J C, ZHANG R. Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica[J]. Nature, 1990, 345(6277): 743-746. DOI: 10.1038/345743a0.
[8] SHIU S H, KARLOWSKI W M, PAN R S, et al. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice[J]. Plant Cell, 2004, 16(5): 1220-1234. DOI: 10.1105/tpc.020834.
[9] VAID N, PANDEY P K, TUTEJA N. Genome-wide analysis of lectin receptor-like kinase family from Arabidopsis and rice[J]. Plant Molecular Biology, 2012, 80(4/5): 365-388. DOI: 10.1007/s11103-012-9952-8.
[10] 林彦萍, 王义, 蒋世翠, 等. 植物类受体蛋白激酶研究进展[J]. 基因组学与应用生物学, 2015, 34(2): 429-437. DOI: 10.13417/j.gab.034.000429.
[11] GUO L, QI Y T, MU Y, et al. Potato StLecRK-IV.1 negatively regulates late blight resistance by affecting the stability of a positive regulator StTET8[J]. Horticulture Research, 2022, 9: UHAC010. DOI: 10.1093/hr/uhac010.
[12] KACHROO A, NASRALLAH M E, NASRALLAH J B. Self-incompatibility in the Brassicaceae: receptor-ligand signaling and cell to cell communication[J]. Plant Cell, 2002, 14(sup): S227-S238. DOI: 10.1105/tpc.010440.
[13] WANG H C, CHEVALIER D, LARUE C, et al. The protein phosphatases and protein kinases of Arabidopsis thaliana[J]. The Arabidopsis Book, 2007, 5: e0106. DOI: 10.1199/tab.0106.
[14] GUO J B, DUAN H, XUAN L, et al. Identification and functional analysis of LecRLK genes in Taxodium ‘Zhongshanshan’[J]. PeerJ, 2019, 7: e7498. DOI: 10.7717/PEERJ.7498.
[15] DESCLOS-THEVENIAU M, ARNAUD D, HUANG T Y, et al. The Arabidopsis lectin receptor kinase LecRK-V.5 represses stomatal immunity induced by Pseudomonas syringae pv. tomato DC3000[J]. PLoS Pathog, 2012, 8(2): e1002513. DOI: 10.1371/journal.ppat.1002513.
[16] KANZAKI H, SAITOH H, TAKAHASHI Y, et al. NbLRK1, a lectin-like receptor kinase protein of Nicotiana benthamiana, interacts with Phytophthora infestans INF1 elicitin and mediates INF1-induced cell death[J]. Planta, 2008, 228(6): 977-987. DOI: 10.1007/s00425-008-0797-y.
[17] HWANG I S, HWANG B K. The pepper mannose-binding lectin gene CaMBL1 is required to regulate cell death and defense responses to microbial pathogens[J]. Plant Physiology, 2011, 155(1): 447-463. DOI: 10.1104/pp.110.164848.
[18] PASSRICHA N, SAIFI S K, KHARB P, et al. Marker-free transgenic rice plant overexpressing pea LecRLK imparts salinity tolerance by inhibiting sodium accumulation[J]. Plant Molecular Biology, 2019, 99(3): 265-281. DOI: 10.1007/S11103-018-0816-8.
[19] SUN X L, YU Q Y, TANG L L, et al. GsSRK, a G-type lectin S-receptor-like serine/threonine protein kinase, is a positive regulator of plant tolerance to salt stress[J]. Journal of Plant Physiology, 2013, 170(5): 505-515. DOI: 10.1016/j.jplph.2012.11.017.
[20] JOSHI A, DANG H Q, VAID N, et al. Pea lectin receptor-like kinase promotes high salinity stress tolerance in bacteria and expresses in response to stress in planta[J]. Glycoconjugate Journal, 2010, 27(1): 133-150. DOI: 10.1007/s10719-009-9265-6.
[21] RIOU C, HERVÉ C, PACQUIT V, et a1. Expression of an Arabidopsis lectin kinase receptor gene, lecRK-a1, is induced during senescence, wounding and in response to oligogalacturonic acids[J]. Plant Physiology and Biochemistry, 2002, 40(5): 431-438. DOI: 10.1016/S0981-9428(02)01390-6.
[22] DENG K Q, WANG Q M, ZENG J X, et al. A lectin receptor kinase positively regulates ABA response during seed germination and is involved in salt and osmotic stress response[J]. Journal of Plant Physiology, 2009, 52(6): 493-500. DOI: 10.1007/s12374-009-9063-5.
[23] XIN Z Y, WANG A Y, YANG G H, et al. The Arabidopsis A4 subfamily of lectin receptor kinases negatively regulates abscisic acid response in seed germination[J]. Plant Physiology, 2009, 149(1): 434-444. DOI: 10.1104/pp.108.130583.
[24] HE X J, ZHANG Z G, YAN D Q, et al. A salt-responsive receptor-like kinase gene regulated by the ethylene signaling pathway encodes a plasma membrane serine/threonine kinase[J]. Theoretical and Applied Genetics, 2004, 109(2): 377-383. DOI: 10.1007/s00122-004-1641-9.
[25] BONAVENTURE G. The Nicotiana attenuata LECTIN RECEPTOR KINASE 1 is involved in the perception of insect feeding[J]. Plant Signaling & Behavior, 2011, 6(12): 2060-2063. DOI: 10.4161/psb.6.12.18324.
[26] WAN J R, PATEL A, MATHIEU M, et al. A lectin receptor-like kinase is required for pollen development in Arabidopsis[J]. Plant Molecular Biology, 2008, 67(5): 469-482. DOI: 10.1007/s11103-008-9332-6.
[27] ZUO K J, ZHAO J Y, WANG J, et al. Molecular cloning and characterization of GhlecRK, a novel kinase gene with lectin-like domain from Gossypium hirsutum[J]. DNA Sequence, 2004, 15(1): 58-65. DOI: 10.1080/1042517042000191454.
[28] 陆秀涛. 拟南芥凝集素类受体激酶基因LecRKIII.1和LecRKIII.2的作用机制研究[D]. 长沙: 湖南大学, 2016: 1-72.
[29] XIAO W J, HU S, ZOU X X, et al. Lectin receptor-like kinase LecRK-VIII.2 is a missing link in MAPK siganling-mediated yield control[J]. Plant Physiology, 2021, 187(1): 303-320. DOI: 10.1093/plphys/kiab241.
[30] CHEN X X, DING Y L, YANG Y Q, et al. Protein kinases in plant responses to drought, salt, and cold stress[J]. Journal of Integrative Plant Biology, 2021, 63(1): 53-78. DOI: 10.1111/jipb.13061.
[31] SUN Y L, QIAO Z Z, MUCHERO W, et al. Lectin receptor-like kinases: the sensor and mediator at the plant cell surface[J]. Frontiers in Plant Science, 2020, 11:596301. DOI: 10.3389/fpls.2020.596301.
[32] LI L, LI K, ALI A, et al. AtWAKL10, a cell wall associated receptor-like kinase, negatively regulates leaf senescence in Arabidopsis thaliana[J]. International Journal of Molecular Sciences, 2021, 22(9): 4885. DOI: 10.3390/ijms22094885.
[33] AZEVEDO H, SILVA-CORREIA J, OLIVEIRA J, et al. A strategy for the identification of new abiotic stress determinants in Arabidopsis using web-based data mining and reverse genetics[J]. Omics, 2011, 15(12): 935-947. DOI: 10.1089/omi.2011.0083.
[1] 李重宁,潘宏程,刘庆业,梁爱惠,蒋治良. 多肽探针结合纳米银催化反应-吸收测定HCG[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 91-97.
[2] 黄东, 李跃林, 卜凯, 黄文, 莫伟彬. 黄酮对运动大鼠脂肪代谢酶与ERRα表达的影响[J]. 广西师范大学学报(自然科学版), 2016, 34(1): 168-173.
[3] 黄华苑, 刘海洋, 何南, 武正军. 利用非损伤法分析鳄蜥粪便激素水平的变化[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 115-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐久成, 李晓艳, 李双群, 张灵均. 基于相容粒的多层次纹理特征图像检索方法[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 186 -187 .
[2] 白德发, 徐欣, 王国长. 函数型数据广义线性模型和分类问题综述[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 15 -29 .
[3] 曾庆樊, 秦永松, 黎玉芳. 一类空间面板数据模型的经验似然推断[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 30 -42 .
[4] 张喜龙, 韩萌, 陈志强, 武红鑫, 李慕航. 面向复杂数据流的集成分类综述[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 1 -21 .
[5] 童凌晨, 李强, 岳鹏鹏. 基于CiteSpace的喀斯特土壤有机碳研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 22 -34 .
[6] 王党树, 仪家安, 董振, 杨亚强, 邓翾. 单周期控制的带纹波抑制单元无桥Boost PFC变换器研究[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 47 -57 .
[7] 喻思婷, 彭靖静, 彭振赟. 矩阵方程的秩约束最小二乘对称半正定解及其最佳逼近[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 136 -144 .
[8] 覃城阜, 莫芬梅. C3-和C4-临界连通图的结构[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 145 -153 .
[9] 阴玉栋, 柯善喆, 黄家艳, 邓梦湘, 刘观艳, 程克光. 1,3-二溴丙烷与醇羧酸和胺一锅法生成烯丙基化合物[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 154 -161 .
[10] 杜丽波, 李金玉, 张晓, 李永红, 潘卫东. 毛红椿皮的化学成分及生物活性研究[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 162 -172 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发