广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (3): 130-143.doi: 10.16088/j.issn.1001-6600.2022050602

• 研究论文 • 上一篇    下一篇

第六类Chebyshev小波配置法求分数阶微分方程数值解

黄英杰, 周凤英*, 许小勇, 何红梅   

  1. 东华理工大学 理学院, 江西 南昌 330013
  • 收稿日期:2022-05-06 修回日期:2022-07-20 出版日期:2023-05-25 发布日期:2023-06-01
  • 通讯作者: 周凤英(1981—), 女, 湖南岳阳人, 东华理工大学副教授, 博士。E-mail: zhoufengying@ecut.edu.cn
  • 基金资助:
    国家自然科学基金(11601076); 江西省自然科学基金(20202BABL201006); 东华理工大学博士科研启动项目(DHBK2019213)

The Sixth Kind of Chebyshev Wavelet Collocation Method for Numerical Solutions of Fractional Differential Equations

HUANG Yingjie, ZHOU Fengying*, XU Xiaoyong, HE Hongmei   

  1. School of Science, East China University of Technology, Nanchang Jiangxi 330013, China
  • Received:2022-05-06 Revised:2022-07-20 Online:2023-05-25 Published:2023-06-01

摘要: 基于第六类Chebyshev小波配置法,提出一种求解分数阶微分方程数值解的数值方法。利用平移的第六类Chebyshev多项式,在Riemann-Liouville分数阶定义下,获得了第六类Chebyshev小波函数的分数阶积分公式的精确表达式。利用积分公式,结合有效配置法,将分数阶微分方程的求解问题转化为代数方程组进行求解。同时,给出了第六类Chebyshev小波函数展开逼近的一致收敛性分析和L2范数意义下的误差估计。通过数值算例验证该算法的适用性与有效性。

关键词: 第六类Chebyshev小波, 分数阶微分方程, Riemann-Liouville分数阶积分, Caputo分数阶微分, 配置法

Abstract: Based on the sixth kind of Chebyshev wavelet collocation method, a numerical method for solving fractional differential equations is proposed. By using the shifted sixth kind of Chebyshev polynomials and under the definition of Riemann-Liouville fractional order, the exact expressions of the fractional order integral formulas of the sixth kind of Chebyshev wavelet functions are obtained. Using the integral formulas together with the effective collocation method, the problem of solving fractional differential equations is transformed into algebraic equations. The uniform convergence analysis of the expansion of the sixth kind of Chebyshev wavelet functions and error estimation in the sense of L2 norm are given. Numerical examples show the applicability and effectiveness of the algorithm.

Key words: the sixth kind of Chebyshev wavelet, fractional order differential equation, Riemann-Liouville fractional integration, Caputo fractional differential, collocation method

中图分类号:  O241.8

[1] SOLTANPOUR A, ARABAMERI M, BALEANU D, et al. Numerical solution of variable fractional order advection-dispersion equation using Bernoulli wavelet method and new operational matrix of fractional order derivative[J]. Mathematical Methods in the Applied Sciences, 2020, 43(7): 3936-3953. DOI: 10.1002/mma.6164.
[2] OSMAN M S, MACHADO J A T, BALEANU D, et al. On distinctive solitons type solutions for some important nonlinear Schrödinger equations[J]. Optical and Quantum Electronics, 2021, 53(2): 70. DOI: 10.1007/s11082-020-02711-z.
[3] KHEIRI H, JAFARI M. Stability analysis of a fractional order model for the HIV/AIDS epidemic in a patchy environment[J]. Journal of Computational and Applied Mathematics, 2019, 346: 323-339. DOI: 10.1016/j.cam.2018.06.55.
[4] MOHAPATRA S N, MISHRA S R, JENA P. Time-fractional differential equations with variable order using RDTM and ADM: application to infectious-disease model[J]. International Journal of Applied and Computational Mathematics, 2022, 138(3): 138. DOI: 10.1007/s40819-022-01332-2.
[5] MOLAVI-ARABSHAHI M, SAEIDI Z. Application of compact finite difference method for solving some type of fractional derivative equations[J]. International Journal of Circuits, Systems and Signal Processing, 2021, 15(143): 1324-1335. DOI: 10.46300/9106.2021.15.143.
[6] EBAID A. A new analytical and numerical treatment for singular two-point boundary value problems via the Adomian decomposition method[J]. Journal of Computational and Applied Mathematics, 2011, 235(8): 1914-1924. DOI: 10.1016/j.cam.2010.09.007.
[7] KUMAR S, GUPTA V. An application of variational iteration method for solving fuzzy time-fractional diffusion equations[J]. Neural Computing and Applications, 2021, 33(24): 17659-17668. DOI: 10.1007/s00521-021-06354-3.
[8] MA X H, HUANG C M. Spectral collocation method for linear fractional integro-differential equations[J]. Applied Mathematical Modelling, 2014, 38(4): 1434-1448. DOI: 10.1016/j.apm.2013.08.013.
[9] NEDAIASL K, DEHBOZORGI R. Galerkin finite element method for nonlinear fractional differential equations[J]. Numerical Algorithms, 2021, 88(1): 113-141. DOI: 10.1007/s11075-020-01032-2.
[10] SAYEVAND K, FARDI M, MORADI E, et al. Convergence analysis of homotopy perturbation method for Volterra integro-differential equations of fractional order[J]. Alexandria Engineering Journal, 2013, 52(4): 807-812. DOI: 10.1016/j.aej.2013.08.008.
[11] PARAND K, MEHDI D, REZAEI A R, et al. An approximation algorithm for the solution of the nonlinear Lane-Emden type equations arising in astrophysics using Hermite functions collocation method[J]. Computer Physics Communications, 2010, 181(6): 1096-1108. DOI: 10.1016/j.cpc.2010.02.018.
[12] BEHERA S, SAHA RAY S. Euler wavelets method for solving fractional-order linear Volterra-Fredholm integro-differential equations with weakly singular kernels[J]. Computational and Applied Mathematics, 2021, 40(6): 192.
[13] 徐志刚. 三类微分方程的Euler小波数值解法[D].南昌:东华理工大学,2021.
[14] 李静,朱莉.分数阶变系数微分方程的Euler小波解法[J].宁波工程学院学报,2019, 31(1): 1-6. DOI: 10.3969/j.issn.1008-7109.2019.01.001.
[15] ARULDOSS R, BALAJI K. Numerical inversion of Laplace transform via wavelet operational matrix and its applications to fractional differential equations[J]. International Journal of Applied and Computational Mathematics, 2022, 8(1): 16. DOI: 10.1007/s40819-021-01222-z.
[16] 朱帅, 朱世昕. Legendre小波函数求解非线性Volterra积分微分方程组的数值解[J].数学的实践与认识,2019, 49(24): 202-207. DOI: CNKI:SUN:SSJS.0.2019-24-025.
[17] REHMAN M, BALEANU D, ALZABUT J, et al. Green-Haar wavelets method for generalized fractional differential equations[J]. Advances in Difference Equations, 2020(1): 515. DOI: 10.1186/s13662-020-02974-6.
[18] 王魁良. Haar小波数值方法及其在力学问题中的应用[D]. 兰州:兰州大学,2021.
[19] VO T N, RAZZAGHI M, TOAN P T. Fractional-order generalized Taylor wavelet method for systems of nonlinear fractional differential equations with application to human respiratory syncytial virus infection[J]. Soft Computing, 2022, 26(1): 165-173. DOI: 10.1007/s00500-021-06436-3.
[20] TOAN P T, VO T N, RAZZAGHI M. Taylor wavelet method for fractional delay differential equations[J]. Engineering with Computers, 2021, 37(1): 231-240. DOI: 10.1007/s00366-019-00818-w.
[21] DHAWAN S, TENREIR MACHADO J A T, BRZEZIŃSKI D W, et al. A Chebyshev wavelet collocation method for some types of differential problems[J]. Symmetry, 2021, 13(4): 536. DOI: 10.3390/sym13040536.
[22] 谢宇.第五类Chebyshev小波的构造及其在分数阶微分方程求解中的应用[D].南昌:东华理工大学, 2020.
[23] ABD-ELHAMEED W M, ALKHAMISI S O. New results of the fifth-kind orthogonal Chebyshev polynomials[J]. Symmetry, 2021, 13(12): 2407. DOI: 10.3390/sym13122407.
[24] ABD-ELHAMEED W M, YOUSSRI Y H. Fifth-kind orthonormal Chebyshev polynomial solutions for fractional differential equations[J]. Computational and Applied Mathematics, 2018, 37(3): 2897-2921. DOI: 10.1007/s40314-017-0488-z.
[25] SADRI K, AMINIKHAH H. Chebyshev polynomials of sixth kind for solving nonlinear fractional PDEs with proportional delay and its convergence analysis[J]. Journal of Function Spaces, 2022, 2022: 9512048. DOI: 10.1155/2022/9512048.
[26] ÇELIK, KARATAŞ A S. Chebyshev wavelets collocation method for extended fisher Kolmogorov equations one and two space dimension[J].International Journal of Applied and Computational Mathematics, 2021, 7(5): 205. DOI: 10.1007/s40819-021-01093-4.
[27] GHANBARI G, RAZZAGHI M. Fractional-order Chebyshev wavelet method for variable-order fractional optimal control problems[J]. Mathematical Methods in the Applied Sciences, 2022, 45(2): 827-842. DOI: 10.1002/mma.7816.
[28] NIGAM H K, MOHAPATRA R N, MURARI K. Wavelet approximation of a function using Chebyshev wavelets[J]. Journal of Inequalities and Applications, 2020(1): 187. DOI: 10.1186/s13660-020-02453-2.
[29] 许小勇, 周凤英. 第三类和第四类Chebyshev小波积分算子矩阵及其在数值积分中的应用[J]. 应用数学, 2016, 29(1): 91-103. DOI: 10.13642/j.cnki.42-1184/o1.2016.01.013.
[30] JAFARI H, NEMATI S, GANJI R M. Operational matrices based on the shifted fifth-kind Chebyshev polynomials for solving nonlinear variable order integro-differential equations[J]. Advances in Difference Equations, 2021(1): 435. DOI: 10.1186/s13662-021-03588-2.
[31] ZHOU F Y, XU X Y. The third kind Chebyshev wavelets collocation method for solving the time fractional convection diffusion equations with variable coefficients[J]. Applied Mathematics and Computation, 2016, 280: 11-29.DOI: 10.1016/j.amc.2016.01.029.
[32] MASJED-JAMEI M. Some new classes of orthogonal polynomials and special functions: a symmetric generalization of Sturm-Liouville problems and its consequences[D]. Kassel: University of Kassel, 2006.
[33] SAADATMANDI A, GHASEMI-NASRABADY A, EFTEKHARI A. Numerical study of singular fractional Lane-Emden type equations arising in astrophysics[J].Journal of Astrophysics and Astronomy, 2019, 40(3):27. DOI: 10.1007/s12036-019-9587-0.
[34] GUPTA A K, SAHA RAY S. Numerical treatment for the solution of fractional fifth-order Sawada-Kotera equation using second kind Chebyshev wavelet method[J]. Applied Mathematical Modelling, 2015, 39(17): 5121-5130. DOI: 10.1016/j.apm.2015.04.003.
[35] ZHOU F Y, XU X Y. Numerical solutions for the linear and nonlinear singular boundary value problems using Laguerre wavelets[J]. Advances in Difference Equations, 2016(1): 17. DOI: 10.1186/s13662-016-0754-1.
[36] NASAB A K, ATABAKAN Z P. ISMAIL A I, et al. A numerical method for solving singular fractional Lane-Emden type equations[J]. Journal of King Saud University-Science, 2018, 30(1): 120-130. DOI: 10.1016/j.jksus.2016.10.001.
[37] 徐志刚,周凤英. Lane-Emden型微分方程数值解的Euler小波方法[J].海南大学学报(自然科学版),2020, 38(3): 207-215. DOI: 10.15886/j.cnki.hdxbzkb.2020.0029.
[38] SINGH R, GARG H, GULERIA V. Haar wavelet collocation method for Lane-Emden equations with Dirichlet, Neumann and Neumann-Robin boundary conditions[J]. Journal of Computational and Applied Mathematics, 2019, 346: 150-161. DOI: 10.1016/j.cam.2018.07.004.
[1] 左佳斌, 贠永震. 一类分数阶微分方程的反周期边值问题[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 56-64.
[2] 黄燕萍, 韦煜明. 一类分数阶微分方程多点边值问题的多解性[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 41-49.
[3] 庞 杨,韦煜明,冯春华. 一类分数阶微分方程两点边值问题正解的存在性[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 68-75.
[4] 闫荣君, 韦煜明, 冯春华. p-Laplacian算子的时滞分数阶微分方程边值问题3个正解的存在性[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 75-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杜雪松,林勇,梁国琨,黄姻,宾石玉,陈忠,覃俊奇,赵怡. 两种罗非鱼的耐寒性能比较[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 174 -179 .
[2] 刘静, 边迅. 直翅目昆虫线粒体基因组的特征及应用[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 17 -28 .
[3] 程瑞, 何明先, 钟春英, 罗树毅, 武正军. 野生与人工繁育鳄蜥游泳能力比较[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 79 -86 .
[4] 徐国良. 广东7种蕨类植物新记录[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 114 -118 .
[5] 张晓磊, 赵伟, 王芳贵. φ-平坦余挠理论[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 119 -124 .
[6] 李本超, 梁艳, 覃小芽, 莫土香, 徐照隆, 李俊, 杨瑞云. 广豆根内生真菌GDG-178代谢产物研究[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 139 -143 .
[7] 詹鑫, 陈李璟, 廖广凤, 李兵, 卢汝梅. 萝藦科药用植物中新C21甾体的研究进展(Ⅰ)[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 1 -29 .
[8] 路凯峰, 杨溢龙, 李智. 一种基于BERT和DPCNN的Web服务分类方法[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 87 -98 .
[9] 孔令涛, 宋祥军, 王晓敏. 可加风险模型现状数据样本量的确定[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 187 -194 .
[10] 张文龙, 南新元. 基于改进YOLOv5的道路车辆跟踪算法[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 49 -57 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发