广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (2): 158-169.doi: 10.16088/j.issn.1001-6600.2021032201

• • 上一篇    下一篇

裂解多糖单加氧酶纳米花固定化研究

任文文, 孙云泽, 李蓉*   

  1. 大连工业大学 生物工程学院,辽宁 大连 116000
  • 收稿日期:2021-03-22 修回日期:2021-04-30 发布日期:2022-05-31
  • 通讯作者: 李蓉(1987—),女,浙江奉化人,大连工业大学讲师,博士。E-mail: ryong_li@126.com
  • 基金资助:
    国家自然科学基金(31600640);辽宁省教育厅科学研究项目(J2019015)

Study on Lytic Polysaccharide Monooxygenase Nanoflower for Immobilization

REN Wenwen, SUN Yunze, LI Rong*   

  1. School of Biological Engineering,Dalian Polytechnic University,Dalian Liaoning 116000, China
  • Received:2021-03-22 Revised:2021-04-30 Published:2022-05-31

摘要: 本文利用新型无机晶体复合物磷酸铜作为载体,对裂解多糖单加氧酶cx-LPMO-B进行固定化,研究其固定化过程的最适条件,并对游离酶及固定化酶的酶学性质进行对比。结果显示:在搅拌条件下,向含有裂解多糖单加氧酶pH=7.4 0.01 mol/L的磷酸盐缓冲溶液中滴加硫酸铜,可形成酶-磷酸铜纳米花,即cx-LPMO-B-NF;在25 ℃、14 h、酶含量为0.3 g/L条件下制备得到的cx-LPMO-B-NF活性最高,固定化酶重复使用6次后仍能保持60%以上的酶活;扫描电子显微镜(SEM)及透射电子显微镜(TEM)发现cx-LPMO-B-NF结构呈现分散均匀且单一的盛开花朵状;固定化酶最适反应pH=4.0,最适反应温度50 ℃。固定化酶重复使用性显著增强,花状结构增加了其表面积,更加有利于对游离酶的固定化,反应条件较温和使其具有较高的工业化应用前景。

关键词: 固定化, 纳米花, 裂解多糖单加氧酶, 酶学性质, 无机晶体复合物

Abstract: In this paper, a novel inorganic crystal complex copper phosphate was used as a carrier to immobilize the lytic polysaccharide monooxygenase (cx-LPMO-B), the optimal conditions for immobilization of cx-LPMO-B was investigated, and the enzymatic properties were compared with the free and immobilization of cx-LPMO-B. The results showed that, copper sulfate was added to the pH=7.4 and 0.01 mol/L phosphate buffer solution containing the cx-LPMO-B to form immobilized cx-LPMO-B-copper phosphate nanoflowers, namely cx-LPMO-B-NF. The cx-LPMO-B-NF reached the highest immobilized yield at 25 ℃ for 14 h with the 0.3 g/L cx-LPMO-B. The immobilized cx-LPMO-B-NF retained a residual activity of approximately 60% after 6 cycles reaction. The nano structure of the immobilized cx-LPMO-B-NF was characterized with scanning electron microscope (SEM) and transmission electron microscope (TEM). It was performed that the immobilized cx-LPMO-B-NF was uniformly dispersed and single blooming flower shape. The optimal pH and temperature for immobilized cx-LPMO-B-NF were pH=4.0 and 50 ℃, respectively. The nano flower structure increased surface area of immobilized carrier to enhance cx-LPMO-B immobilization. Moreover, the reusability of immobilized cx-LPMO-B-NF was significantly enhanced.Therefore, the immobilized cx-LPMO-B-NF can promote advantages for cx-LPMO-B industrial application.

Key words: immobilization, nanoflower, lysing polysaccharide monooxygenase, enzymatic properties, inorganic crystal complex

中图分类号: 

  • Q814.2
[1] 李冬敏, 沈乃东, 冯鹏, 等. 玉米纤维乙醇技术研究进展与应用现状[J]. 生物产业技术, 2019(1): 95-101.
[2] KUBICKI J D, YANG H, SAWADA D, et al. The shape of native plant cellulose microfibrils[J]. Scientific Reports, 2018, 8(1): 13983.
[3] QUINLAN R J, SWEENEY M D, LEGGIO L L, et al. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(37): 15079-15084.
[4] 张清翠, 石雅丽, 刘安礼, 等. 外切纤维素酶的研究与应用进展[J]. 生物技术进展, 2020, 10(5): 495-502.
[5] JOHANSEN K S. Discovery and industrial applications of lytic polysaccharide mono-oxygenases[J]. Biochemical Society Transactions, 2016, 44(1): 143-149.
[6] VAAJE-KOLSTAD G, WESTERENG B, HORN S J, et al. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides[J]. Science, 2010, 330(6001): 219-222.
[7] 罗贵民. 酶工程[M]. 北京: 化学工业出版社, 2003.
[8] BHAVANIRAMYA S, VANAJOTHI R, VISHNUPRIYA S, et al. Enzyme immobilization on nanomaterials for biosensor and biocatalyst in food and biomedical industry[J]. Current Pharmaceutical Design, 2019, 25(24): 2661-2676.
[9] 叶麟, 姜露, 申光辉, 等. 纤维素膜固定化麦麸酯酶的工艺研究[J]. 食品与机械, 2016, 32(10): 63-68.
[10] 林海蛟, 张继福, 张云, 等. 基于大孔吸附树脂先交联后吸附法固定化脂肪酶[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 100-108.
[11] ÖZALP V C, ZEYDANLI U S, LUNDING A, et al. Nanoparticle embedded enzymes for improved lateral flow sensors[J]. The Analyst, 2013, 138(15): 4255-4259.
[12] 祝英, 庄鹤桐, 王治业, 等. 酵母固定化方法的比较及应用[J]. 中国酿造, 2019, 38(1): 113-117.
[13] 钱军民, 李旭祥. HEC/SiO2凝胶复合物包埋固定化葡萄糖氧化酶的研究[J]. 应用化学, 2002, 19(2): 153-157.
[14] KIM J, GRATE J W, WANG P. Nanostructures for enzyme stabilization[J]. Chemical Engineering Science, 2006, 61(3): 1017-1026.
[15] MATEO C, ABIAN O, FERANNDEZ-LAFUENTE R, et al. Reversible enzyme immobilization via a very strong and nondistorting ionic adsorption on support-polyethylenimine composites[J]. Biotechnology and Bioengineering, 2000, 68(1): 98-105.
[16] LÓPEZ-GALLEGO F, BETANCOR L, MATEO C, et al. Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports[J]. Journal of Biotechnology, 2005, 119(1): 70-75.
[17] 郑璐. 生物矿化法固定化酶的研究[D]. 长春: 吉林大学, 2019.
[18] LIN Z A, XIAO Y, YIN Y Q, et al. Facile synthesis of enzyme-inorganic hybrid nanoflowers and its application as a colorimetric platform for visual detection of hydrogen peroxide and phenol[J]. ACS Applied Materials & Interfaces, 2014, 6(13): 10775-10782.
[19] ZHANG B L, LI P T, ZHANG H P, et al. Preparation of lipase/Zn3(PO4)2hybrid nanoflower and its catalytic performance as an immobilized enzyme[J]. Chemical Engineering Journal, 2016, 291: 287-297.
[20] SONG Y J, YANG Y, MEDFORTH C J, et al. Controlled synthesis of 2-D and 3-D dendritic platinum nanostructures[J]. Journal of the American Chemical Society, 2004, 126(2): 635-645.
[21] YIN Y, XIAO Y, LIN G, et al. An enzyme-inorganic hybrid nanoflower based immobilized enzyme reactor with enhanced enzymatic activity[J]. Journal of Materials Chemistry B, 2015,3(11): 2295-2300.
[22] GE J D, LEI J D, ZARE R N. Protein-inorganic hybrid nanoflowers[J]. Nature Nanotechnology, 2012, 7(7): 428-432.
[23] HE G L, HU W H, LI C M. Spontaneous interfacial reaction between metallic copper and PBS to form cupric phosphate nanoflower and its enzyme hybrid with enhanced activity[J]. Colloids and Surfaces B: Biointerfaces, 2015, 135: 613-618.
[24] 郝梦瑶. 短杆菌来源胆固醇氧化酶的重组表达及杂化纳米花固定化研究[D]. 无锡: 江南大学, 2019.
[25] MEMON A H. 新型金属有机杂化纳米材料的构建及其应用[D]. 北京: 北京化工大学, 2019.
[26] WANG L B, WANG Y C, HE R, et al. A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performance[J]. Journal of the American Chemical Society, 2013, 135(4): 1272-1275.
[27] 王宏. 二鸟苷酸环化酶的筛选、表达以及固定化[D]. 杭州: 浙江大学, 2020.
[28] 朱衡, 张继福, 张云, 等. 基于羧基载体LX-1000IDA的脂肪酶固定化研究[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 88-101.
[29] 彭开敏, 叶泰, 曹慧, 等. 猪肝酯酶杂化“纳米花”的制备及其对菊酯类农药的水解性能研究[J]. 分析测试学报, 2018, 37(12): 1412-1417.
[1] 朱衡, 张继福, 张云, 胡云峰. 基于羧基载体LX-1000IDA的脂肪酶固定化研究[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 88-101.
[2] 林海蛟, 张继福, 张云, 胡云峰. 基于大孔吸附树脂先交联后吸附法固定化脂肪酶[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 100-108.
[3] 徐珊, 李任强, 张继福, 张云, 孙爱君, 胡云峰. 使用国产环氧树脂LXEP-120固定化脂肪酶研究[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 108-118.
[4] 钟成华, 张文东, 刘鹏, 陈建. 包埋固定化复合菌低温下处理养猪废水研究[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 52-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 艾艳, 贾楠, 王媛, 郭静, 潘东东. 多性状多位点遗传关联分析的统计方法研究及其应用进展[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 1 -14 .
[2] 白德发, 徐欣, 王国长. 函数型数据广义线性模型和分类问题综述[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 15 -29 .
[3] 曾庆樊, 秦永松, 黎玉芳. 一类空间面板数据模型的经验似然推断[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 30 -42 .
[4] 张治飞, 段谦, 刘乃嘉, 黄磊. 基于Jackknife互信息的高维非线性回归模型研究[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 43 -56 .
[5] 杨迪, 方扬鑫, 周彦. 基于MEB和SVM方法的新类别分类研究[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 57 -67 .
[6] 陈钟秀, 张兴发, 熊强, 宋泽芳. 非对称DAR模型的估计与检验[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 68 -81 .
[7] 杜锦丰, 王海荣, 梁焕, 王栋. 基于表示学习的跨模态检索方法研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 1 -12 .
[8] 李慕航, 韩萌, 陈志强, 武红鑫, 张喜龙. 面向复杂高效用模式的挖掘算法综述[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 13 -30 .
[9] 晁睿, 张坤丽, 王佳佳, 胡斌, 张维聪, 韩英杰, 昝红英. 中文多模态知识库构建[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 31 -39 .
[10] 李正光, 陈恒, 林鸿飞. 基于双向语言模型的社交媒体药物不良反应识别[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 40 -48 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发