|
广西师范大学学报(自然科学版) ›› 2018, Vol. 36 ›› Issue (4): 108-118.doi: 10.16088/j.issn.1001-6600.2018.04.014
徐珊1, 李任强1, 张继福2, 张云3,4, 孙爱君3,4, 胡云峰3,4*
XU Shan1, LI Renqiang1, ZHANG Jifu2, ZHANG Yun3,4, SUN Aijun3,4, HU Yunfeng3,4*
摘要: 使用国产环氧树脂LXEP-120对猪胰脂肪酶进行固定化,研究其固定化工艺的最佳条件,并且对固定化酶和游离脂肪酶的酶学性质作初步的比较。结果显示,最佳固定化条件为:选用pH6.0、1.0 mol/L的磷酸钾缓冲液,载体投放量5.0 g,固定化温度22 ℃,固定化时间12 h。最终得到的固定化酶酶活400 U/g,酶活回收率92.79%,固定化酶重复使用10次后仍保持70%左右的酶活。与游离酶相比,固定化酶的最适反应pH(pH8.0)没有变化,最适反应温度(45 ℃)提高5 ℃,pH耐受性、热稳定性和重复使用性显著增强。同时,固定化酶具有较好的储存稳定性。研究结果证明国产环氧树脂LXEP-120在工业酶的固定化应用上具有很好的应用潜力。
中图分类号:
[1] 谢雪凤. 嗜热子囊菌产过氧化氢酶的生产、固定化及应用研究[D]. 杭州:浙江工业大学, 2009. [2] KUMARI A, GUPTA R. Functional characterization of a novel aspartic acid rich lipase, talipc, from trichosporon asahii msr54: solvent-dependent enantio inversion during esterification of 1-phenylethanol[J]. Biotechnol Lett, 2015, 37(1): 121-130. [3] CAO Y, ZHUANG Y, YAO C, et al. Purification and characterization of an organic solvent-stable lipase from pseudomonas stutzeri lc2-8 and its application for efficient resolution of (r, s)-1-phenylethanol[J]. Biochemical Engineering Journal, 2012, 64: 55-60. [4] ROMDHANE I B, ROMDHANE Z B, BOUZID M, et al. Application of a chitosan-immobilized talaromyces thermophilus lipase to a batch biodiesel production from waste frying oils[J]. Appl Biochem Biotechnol, 2013, 171(8): 1986-2002. [5] JAMIE A, ALSHAMI A S, MALIABARI Z O, et al. Immobilization and enhanced catalytic activity of lipase on modified MWCNT for oily wastewater treatment[J]. Environmental Progress and Sustainable Energy, 2016, 35(5): 1441-1449. [6] HA S H, LAN M N, LEE S H, et al. Lipase-catalyzed biodiesel production from soybean oil in ionic liquids[J]. Enzyme and Microbial Technology, 2007, 41(4): 480-483. [7] VAHEDI H. Evaluating the effects of different levels of lipase enzyme on the quality of baguette bread[J]. Acta Medica Mediterranea, 2015, 31: 1359-1363. [8] LAUPRASERT P, CHANSIRIRATTANA J,PAENGJAN J. Effect of selected bacteria as bioremediation on the degradation of fats oils and greases in wastewater from cafeteria grease traps[J]. European Journal of Sustainable Development, 2017, 6(2): 180-185. [9] 曾淑华, 杨江科, 闫云军. 固定化脂肪酶性质及其应用研究[J]. 生物加工过程, 2007, 5(1): 45-49. [10] KIM H, CHOI N, OH S W, et al. Synthesis of alpha-linolenic acid-rich triacylglycerol using a newly prepared immobilized lipase[J]. Food Chemistry, 2017, 237: 654-658. [11] MENDES A A, DE CASTRO H F, RODRIGUES D D, et al. Multipoint covalent immobilization of lipase on chitosan hybrid hydrogels: influence of the polyelectrolyte complex type and chemical modification on the catalytic properties of the biocatalysts[J]. Journal of Industrial Microbiology and Biotechnology, 2011, 38(8): 1055-1066. [12] LEI M, HU D, YANG H, et al. Preparation and characterization of hollow magnetic composite nanoparticles for immobilized pectinase[J]. Surface and Coatings Technology, 2015, 271: 2-7. [13] NUNES M A P, VILA-REAL H, FERNANDES P C B, et al. Immobilization of naringinase in pva-alginate matrix using an innovative technique[J]. Applied Biochemistry and Biotechnology, 2010, 160(7): 2129-2147. [14] LOPEZ-GALLEGO F, BETANCOR L, MATEO C, et al. Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports[J]. Journal of Biotechnology, 2005, 119(1): 70-75. [15] TORRES P, BATISTA-VIERA F. Immobilization of β-galactosidase from bacillus circulans onto epoxy-activated acrylic supports[J]. Journal of Molecular Catalysis B: Enzymatic, 2012, 74(3/4): 230-235. [16] 刘文涛, 段洪东, 王兴建, 等. 环氧基固定化酶载体的研究进展[J]. 山东轻工业学院学报, 2012, 26(3): 40-44. [17] AGHABABAIE M, BEHESHTI M, RAZMJOU A, et al. Covalent immobilization of candida rugosa lipase on a novel functionalized Fe3O4@SiO2 dip-coated nanocomposite membrane[J]. Food and Bioproducts Processing, 2016, 100: 351-360. [18] XIANG X R, SUO H B, XU C, et al. Covalent immobilization of lipase onto chitosan-mesoporous silica hybrid nanomaterials by carboxyl functionalized ionic liquids as the coupling agent[J]. Colloids and Surfaces B, Biointerface, 2018, 165: 262-269. [19] ZHAO J Q, WANG Y J, LUO G S, et al. Covalent immobilization of penicillin g acylase on aminopropyl-functionalized mesostructured cellular foams[J]. Bioresour Technol, 2010, 101(19): 7211-7217. [20] 顾恺, 邹树平, 王志才, 等. 环氧树脂固定化卤醇脱卤酶的研究[J]. 现代化工, 2016, 36(11): 69-74. [21] EPHRAIM K K, KRAEMER D M. Eupergit (r) c, a carrier for immobilization of enzymes of industrial potential[J]. Journal of Molecular Catalysis B-Enzymatic, 2000, 10(1-3): 157-176. [22] 刘向前, 李道明, 王卫飞, 等. Lipozyme~CALB L固定化及催化合成EPA/DHA甘油酯的研究[J]. 中国油脂, 2016(11): 21-26. [23] GONZALEZ-CORONEL L A, COBAS M, Rostro-Alanis M D, et al. Immobilization of laccase of pycnoporus sanguineus cs43[J]. New Biotechnology, 2017, 39: 141-149. [24] KNEZEVIC-JUGOVIC Z D, GRBAVCIC S Z, JOVANOVIC J R, et al. Covalent immobilization of enzymes on Eupergit() supports: effect of the immobilization protocol[J]. Methods Mol Biol, 2017, 1504: 75-91. [25] WANG J, LI W, NIU D D, et al. Improved synthesis of isomaltooligosaccharides using immobilized alpha-glucosidase in organic-aqueous media[J]. Food Science and Biotechnology, 2017, 26(3): 731-738. [26] 侯爱军,徐冰斌,梁亮,等.改进铜皂-分光光度法测定脂肪酶活力[J].皮革科学与工程,2011,21(1):22-27. [27] 嵇东情, 郑仁朝, 郑裕国. 环氧树脂固定化拟南芥腈水解酶NIT的研究[J]. 精细与专用化学品, 2015, 23(5): 12-16. [28] 崔培梧, 黎继烈, 肖作为, 等. 环氧基树脂固定化青霉菌柚苷酶的工艺条件[J]. 食品与发酵工业, 2014, 40(5): 87-92. [29] 侯丽云. 脂肪酶固定化及其在催化合成乙酸香茅酯中的应用[D]. 扬州: 扬州大学, 2013: 11. [30] 刘自琴. 脂肪酶和胰蛋白酶的固定化及共固定化研究[D]. 广州: 华南理工大学, 2012: 4. [31] MATEO C, GRAZú V, PESSELA B C, et al. Advances in the design of new epoxy supports for enzyme immobilization-stabilization[J]. Biochemical Society Transactions, 2007, 35(6):1593-1601. [32] 雷生姣, 王可兴, 吕晓燕, 等. 聚乙烯醇-海藻酸钙固定化柚苷酶[J]. 食品科学,2011,32(3): 138-143. [33] FERNANDES A I, GREGORIADIS G. Synthesic, characterization and properties of sialylated catalase[J]. Biochimica et Biophysica Acta (BBA) -Protein Structure and Molecular Enzymology, 1996, 1293(1): 90-96. [34] AMIN H A, SECUNDO F, AMER H, et al. Improvement of aspergillus flavus saponin hydrolase thermal stability and productivity via immobilization on a novel carrier based on sugarcane bagasse[J]. Biotechnol Rep (Amst), 2018, 17: 55-62. [35] DILEK A, BARIS B, DENIZ Y, et al. Improving stability of formate dehydrogenase from Candida methylica by immobilization onto Eupergit C 250 L[J]. Applied Biochemistry and Microbiology, 2016(1): 37-42. [36] DRISS D, DRISS Z, CHAARI F, et al. Immobilized his-tagged recombinant xylanase from penicillium occitanis on nickel-chelate Eupergit C[J]. Bioengineered, 2014, 5(4): 274-279. |
[1] | 林海蛟, 张继福, 张云, 胡云峰. 基于大孔吸附树脂先交联后吸附法固定化脂肪酶[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 100-108. |
[2] | 钟成华, 张文东, 刘鹏, 陈建. 包埋固定化复合菌低温下处理养猪废水研究[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 52-56. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |