|
广西师范大学学报(自然科学版) ›› 2020, Vol. 38 ›› Issue (3): 59-69.doi: 10.16088/j.issn.1001-6600.2020.03.008
杨晓伟1,2, 张军舰1*
YANG Xiaowei1,2, ZHANG Junjian1*
摘要: 本文构建负二项回归模型选择架构,研究在模型选择中对数似然函数的渐近性质及其与联系函数之间的依赖关系;推出模型参数最大似然估计的重对数律,并建立该类模型选择的强相合准则;证明在一些条件下,如果惩罚项阶数随模型的维数增加且介于O(lnln n)和O(n)之间,则由负最大对数似然和其惩罚项组成的模型选择准则几乎必然选择最简单的正确模型。
中图分类号:
[1] 陈希孺. 广义线性模型的拟似然法[M].合肥: 中国科学技术大学出版社, 2011: 49-75. [2] GEORGE E. Statistics in the 21st century[M].London: Chapman and Hall, 2002: 350-358. [3] RAO C, WO Y. Model selection[M].Beachwood: Institute of Mathematical Statistics, 2001: 1-64. [4] CAMERON A C, TRIVEDI P K. Regression-based tests for overdispersion in the Poisson model[J].Journal of Econometrics, 1990, 46(3):347-364. DOI: 10.1016/0304-4076(90)90014-K. [5] QIAN G Q, FIELD C. Law of iterated logarithm and consistent model selection criterion in logistic regression[J]. Statistics and Probability Letters, 2002, 56(1): 101-112. DOI: 10.1016/S0167-7152(01)00191-2. [6] AKAIKE H. Information theory and an extension of the maximum likelihood principle[C]//Proceedings of the Second International Symposium on Information Theory. Budapest: Akademiai Kiado,1973: 267-281.DOI: 10.1007/978-1-4612-0919- 5_38. [7] SCHWARZ G. Estimating the dimension of a model[J].Annals of Statistics, 1978, 6(2): 461-464. DOI: 10.1214/aos/ 1176344136. [8] RISSANEN J. Stochastic complexity in statistical inquiry[M].Singapore: World Scientific Publishing, 1989:123-133. [9] TUTZ G. Regression for categorical data[M].London: Cambridge University Press, 2011: 143-162. [10]WANG Z, MA S G, ZAPPITELLI M, et al. Penalized count data regression with application to hospital stay after pediatric cardiac surgery[J]. Statistical Methods in Medical Research, 2016, 26(5): 2685-2703.DOI:10.1177/0962280214530608. [11]MALLOWS C. Some comments on Cp[J].Technometrics, 1973, 15(4): 661-675. DOI: 10.2307/1267380. [12]QIAN G Q, KUNSCH H. Some notes on rissanen’s stochastic complexity[J].IEEE Transactions on Information Theory, 1998, 44(2): 782-786. DOI: 10.1109/18.661521. [13]RISSANEN J. Fisher information and stochastic complexity[J].IEEE Transactions Information Theory, 1996, 42(1): 40-47. DOI: 10.1109/18.481776. [14]RAO C, ZHAO L C. Linear representation of m-estimates in linear models[J].The Canadian Journal of Statistics, 1992, 20(4): 359-368. DOI: 10.2307/3315607. [15]WU Y, ZEN M M. A strongly consistent information criterion for linear model selection based on M-estimation[J]. Probability Theory and Related Fields, 1999, 113(4): 599-625. DOI: 10.1007/s004400050219. [16]QIAN G Q, WU Y H. Strong limit theorems on model selection in generalized linear regression with binomial responses[J].Statisticsa Sinica, 2006, 16(4): 1335-1365. [17]RIGOLLET P. Kullback-Leibler aggregation and misspecified generalized linear models[J].The Annals of Statistics, 2012, 40(2): 639-665. DOI: 10.1214/11-AOS961. [18]CHOW Y, TEICHER H. Probability Theory: independence, interchangeability, martingales[M].3rd ed.New York: Springer, 1997: 30-45. [19]PETROV V. Limit theorems of probability theory: sequences of independent random variables[M].New York: Oxford University Press, 1995: 85-88. [20]McCULLAGH P, NELDER J. Generalized linear models[M].2nd ed.London: Chapman and Hall, 1989: 90-112. [21]BOHMAN H. Two inequalities for poisson distributions[J].Skandinavisk Aktuarietidskrift,1963,46(1): 47-52. DOI: 10.1080/03461238.1963.10404790. [22]GEORGE E, McCULLOCK R. Approaches for bayesian variable selection[J].Statistica Sinica,1997, 7(2): 339-373. [23]TIBSHIRANI R. Regression shrinkage and selection via the Lasso[J].Journal of the Royal Statistical Society,1996, 58(1): 267-288. DOI: 10.1.1.35.7574. |
[1] | 杨善朝, 梁丹. φ混合样本下频率插值密度估计的强相合性[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 16-21. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |