Journal of Guangxi Normal University(Natural Science Edition) ›› 2017, Vol. 35 ›› Issue (2): 39-44.doi: 10.16088/j.issn.1001-6600.2017.02.006

Previous Articles     Next Articles

Two Dimensional Classical Groups PSL(2,q)and Flag-transitive 2-(v,k,λ) Designs

WANG Pei, ZHOU Shenglin*   

  1. School of Mathematics, South China University of Technology, Guangzhou Guangdong 510640, China
  • Online:2017-07-25 Published:2018-07-25

Abstract: Flag-transitivity is one of the many conditions that can be imposed on the automorphism group G of a 2-(v,k,λ) design D. In 1988, it is proved by Zieschang that if D is a 2-(v,k,λ) design, G≤Aut(G) is flag-transitive and (r,λ)=1, then G is affine or almost simple. So it is possible to classify this type of designs by using the classification of finite simple groups. Let D be a nontrivial 2-(v,k,λ) design with (r,λ)=1 and v≤1 000, and let G≤Aut(D) be flag-transitive with Soc(G)PSL(2,q). It is proved that, up to isomorphism, there are exactly 18 pairs (D, G).

Key words: 2-design, flag-transitive, point-primitive, socle, two dimensional classical groups

CLC Number: 

  • O152.1
[1] BUEKENHOUT F, DELANDTSHEER A, DOYEN J, et al. Linear spaces with flag-transitive automorphism groups[J]. Geometriae Dedicata, 1990, 36(1):89-94. DOI:10.1007/BF00181466.
[2] O’REILLY-REGUEIRO E. On primitivity and reduction for flag-transitive symmetric designs[J]. J Combin Theory Ser A, 2005, 109(1):135-148. DOI:10.1016/j.jcta.2004.08.002.
[3] O’REILLY-REGUEIRO E. Biplanes with flag-transitive automorphism groups of almost simple type, with alternating or sporadic socle[J]. Europ J of Combin, 2005, 26(5):577-584. DOI:10.1016/j.ejc.2004.05.003.
[4] O’REILLY-REGUEIRO E. Biplanes with flag-transitive automorphism groups of almost simple type, with classical socle[J]. J Algebr Combin, 2007, 26(4):529-552. DOI:10.1007/s10801-007-0070-7.
[5] O’REILLY-REGUEIRO E. Biplanes with flag-transitive automorphism groups of almost simple type, with exceptional socle of Lie type[J]. J Algebr Combin, 2008, 27(4):479-491. DOI:10.1007/s10801-007-0098-8.
[6] ZHOU Shenglin, DONG Huili. Sporadic groups and flag-transitive triplanes[J]. Sci China Mathematics, 2009, 52(2):394-400. DOI:10.1007/s11425-009-0011-0.
[7] ZHOU Shenglin, DONG Huili. Exceptional groups of Lie type and flag-transitive triplanes[J]. Sci China Mathematics, 2010, 53(2):447-456. DOI:10.1007/s11425-009-0051-5.
[8] ZHOU Shenglin, DONG Huili, FANG Weidong. Finite classical groups and flag-transitive triplanes[J]. Discrete Math, 2009, 309(16):5183-5195. DOI:10.1016/j.disc.2009.04.005.
[9] ZIESCHANG P H. Flag transitive automorphism groups of 2-designs with (r,λ)=1[J]. J Algebra, 1988, 118(2):369-375. DOI:10.1016/0021-8693(88)90027-0.
[10] ZHOU Shenglin, WANG Yajie. Flag-transitive non-symmetric 2-designs with (r,λ)=1 and alternating socle[J]. Electron J Comb, 2015, 22(2):P2.6.
[11] ZHAN Xiaoqin, ZHOU Shenglin. Flag-transitive non-symmetric 2-designs with (r,λ)=1 and sporadic scole[J]. J Des Codes Cryptogr, 2016, 81(3):481-487. DOI:10.1007/s10623-015-0171-6.
[12] AMDERSON I, HONKALA I. A short course in combinatorial designs[M]. [S.l.]:[s.n.], 1997.
[13] DEMBOWSKI P. Finite Geometries[M]. New York: Springer-Verlag, 1968.
[14] DIXON J D, MORTIMER B. Permutation Groups[M]. New York: Springer-Verlag, 1996.
[15] BOSMA W, CANNON J, PLAYOUST C. The magma algebra system I: The user language[J]. J Symb Comput, 1997, 24(3/4):235-265. DOI:10.1006/jsco.1996.0125.
[1] BAI Shuyi, ZHOU Tao, PENG Shali, GAN Lingfang, ZHAN Xiaoqin. Block-transitive 2-(v,k,λ) Designs with Imprimitive Group ScwrSd [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 59-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!