Journal of Guangxi Normal University(Natural Science Edition) ›› 2017, Vol. 35 ›› Issue (2): 39-44.doi: 10.16088/j.issn.1001-6600.2017.02.006
Previous Articles Next Articles
WANG Pei, ZHOU Shenglin*
CLC Number:
[1] BUEKENHOUT F, DELANDTSHEER A, DOYEN J, et al. Linear spaces with flag-transitive automorphism groups[J]. Geometriae Dedicata, 1990, 36(1):89-94. DOI:10.1007/BF00181466. [2] O’REILLY-REGUEIRO E. On primitivity and reduction for flag-transitive symmetric designs[J]. J Combin Theory Ser A, 2005, 109(1):135-148. DOI:10.1016/j.jcta.2004.08.002. [3] O’REILLY-REGUEIRO E. Biplanes with flag-transitive automorphism groups of almost simple type, with alternating or sporadic socle[J]. Europ J of Combin, 2005, 26(5):577-584. DOI:10.1016/j.ejc.2004.05.003. [4] O’REILLY-REGUEIRO E. Biplanes with flag-transitive automorphism groups of almost simple type, with classical socle[J]. J Algebr Combin, 2007, 26(4):529-552. DOI:10.1007/s10801-007-0070-7. [5] O’REILLY-REGUEIRO E. Biplanes with flag-transitive automorphism groups of almost simple type, with exceptional socle of Lie type[J]. J Algebr Combin, 2008, 27(4):479-491. DOI:10.1007/s10801-007-0098-8. [6] ZHOU Shenglin, DONG Huili. Sporadic groups and flag-transitive triplanes[J]. Sci China Mathematics, 2009, 52(2):394-400. DOI:10.1007/s11425-009-0011-0. [7] ZHOU Shenglin, DONG Huili. Exceptional groups of Lie type and flag-transitive triplanes[J]. Sci China Mathematics, 2010, 53(2):447-456. DOI:10.1007/s11425-009-0051-5. [8] ZHOU Shenglin, DONG Huili, FANG Weidong. Finite classical groups and flag-transitive triplanes[J]. Discrete Math, 2009, 309(16):5183-5195. DOI:10.1016/j.disc.2009.04.005. [9] ZIESCHANG P H. Flag transitive automorphism groups of 2-designs with (r,λ)=1[J]. J Algebra, 1988, 118(2):369-375. DOI:10.1016/0021-8693(88)90027-0. [10] ZHOU Shenglin, WANG Yajie. Flag-transitive non-symmetric 2-designs with (r,λ)=1 and alternating socle[J]. Electron J Comb, 2015, 22(2):P2.6. [11] ZHAN Xiaoqin, ZHOU Shenglin. Flag-transitive non-symmetric 2-designs with (r,λ)=1 and sporadic scole[J]. J Des Codes Cryptogr, 2016, 81(3):481-487. DOI:10.1007/s10623-015-0171-6. [12] AMDERSON I, HONKALA I. A short course in combinatorial designs[M]. [S.l.]:[s.n.], 1997. [13] DEMBOWSKI P. Finite Geometries[M]. New York: Springer-Verlag, 1968. [14] DIXON J D, MORTIMER B. Permutation Groups[M]. New York: Springer-Verlag, 1996. [15] BOSMA W, CANNON J, PLAYOUST C. The magma algebra system I: The user language[J]. J Symb Comput, 1997, 24(3/4):235-265. DOI:10.1006/jsco.1996.0125. |
[1] | BAI Shuyi, ZHOU Tao, PENG Shali, GAN Lingfang, ZHAN Xiaoqin. Block-transitive 2-(v,k,λ) Designs with Imprimitive Group ScwrSd [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 59-65. |
|