Journal of Guangxi Normal University(Natural Science Edition) ›› 2017, Vol. 35 ›› Issue (2): 45-49.doi: 10.16088/j.issn.1001-6600.2017.02.007

Previous Articles     Next Articles

Nearly SS-Quasinormal Subgroups and p-Nilpotency of Finite Groups

PENG Hong, ZHONG Xianggui*, XIE Qing   

  1. College of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi 541004, China
  • Online:2017-07-25 Published:2018-07-25

Abstract: Let G be a finite group. A subgroup H of G is said to be nearly SS-quasinormal in G if G has a S-quasinormal subgroup K such that HK is S-quasinormal in G, and H∩K≤HseG, where HseG is the subgroup of H generated by all those subgroups of H which are SS-quasinormal in G. In this paper, by using the nearly SS-quasinormalility of n-maximal subgroups of some Sylow p-subgroup of G, some new characterizations of p-nilpotent groups are obtained and several known results are generalized.

Key words: finite groups, nearly SS-quasinormal subgroups, p-nilpotent groups

CLC Number: 

  • O152.1
[1] KEGEL O H. Sylow-gruppen und subnormalteiler endlicher gruppen[J]. Math Z, 1962, 78(1): 205-221. DOI:10.1007/BF01195169.
[2] BALLESTER-BOLINCHES A, PEDRAZA-AGUILERA M C. Sufficient conditions for supersolubility of finite groups[J]. J Pure Appl Algebra, 1998, 127(2): 113-118. DOI:10.1016/S0022-4049(96)00172-7.
[3] HUO Lijun, GUO Wenbin, MAKHNEV A. On nearly SS-embedded subgroups of finite groups[J]. Chin Ann Math(Series B), 2014, 35(6): 885-894. DOI:10.1007/s11401-014-0865-5.
[4] LI Changwen. Finite groups with some primary subgroups SS-quasinormally embedded[J]. Indian J Pure Appl Math, 2011, 42(5): 291-306. DOI:10.1007/s13226-011-0020-x.
[5] SCHMID P. Subgroups permutable with all sylow subgroups[J]. J Algebra, 1988, 207(1):285-293. DOI:10.1006/jabr.1998.7429.
[6] DESKINS W E. On quasinormal subgroups of finite groups[J]. Math Z, 1963, 82(2): 125-132. DOI:10.1007/BF01111801.
[7] WIELANDT H. Subnormal subgroups and permutation groups[M]. Columbus, Ohio: Ohio State Univ, 1971.
[8] GUO Yanhui, ISAACS I M. Conditions on p-subgroups implying p-nilpotence or p-supersolvability[J]. Arch Math, 2015, 105(3): 215-222. DOI:10.1007/s00013-015-0803-0.
[9] BALLESTER-BOLINCHES A, GUO Xiuyun, LI Yangming, et al. On finite p-nilpotent groups[J]. Monatsh Math, 2016, 181(1): 63-70. DOI:10.1007/S00605-015-0803-y.
[10] YU Haoran. Some sufficient and necessary conditions for p-supersolvablity and p-nilpotence of a finite group[J]. J Algebra Appl, 2017, 16(3): 1750052. DOI:10.1142/S0219498817500529.
[11] ZHANG Xinjian, LI Xianhua, MIAO Long. Sylow normalizers and p-nilpotence of finite groups[J]. Comm Algebra, 2015, 43(3): 1354-1363. DOI:10.1080/00927872.2013.865047.
[12] 李先崇, 黎先华. 弱-可补子群对有限群结构的影响[J]. 广西师范大学学报(自然科学版), 2012, 30(1): 25-28.DOI:10.16088/j.issn.1001-6600.2012.01.014.
[13] 吴勇, 钟祥贵, 蒋青芝, 等. CSS-拟正规子群与有限群的p-幕零性[J]. 广西师范大学学报(自然科学版), 2014, 32(2): 60-63.
[14] 徐明曜.有限群导引(上册)[M]. 2版. 北京: 科学出版社, 1999.
[15] 徐明曜, 黄建华, 李慧陵, 等. 有限群导引(下册)[M]. 北京: 科学出版社, 2001.
[1] ZHONG Xianggui, SUN Yue, WU Xianghua. Nearly CAP*-Subgroups and p-Supersolvability of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 74-78.
[2] WU Yong, ZHONG Xiang-gui, JIANG Qing-zhi, ZHANG Xiao-fang. CSS-Quasinormal Subgroups and p-Nilpotency of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(2): 60-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!