Journal of Guangxi Normal University(Natural Science Edition) ›› 2017, Vol. 35 ›› Issue (4): 10-16.doi: 10.16088/j.issn.1001-6600.2017.04.002

Previous Articles     Next Articles

Tracking Control of Synchronous Reluctance Motor Basedon Feedback Linearization Method

WU Lei1, MA Shujing2*, XIAO Huapeng2, TANG Wen1   

  1. 1.Department of Automation,Air Force Airborne Academy, Guilin Guangxi 541003, China;
    2. College of Physical Science and Technology, Guangxi Normal University, Guilin Guangxi 541004, China
  • Online:2017-07-25 Published:2018-07-25

Abstract: It is important to study how to control chaos in synchronous reluctance motor. In the paper, chaotic characteristics of synchronous reluctance motor is studied by numerical analysis. The different motion states of synchronous reluctance motor are analyzed by using Lyapunov exponent. The controller is designed based on the local feedback linearization theory in differential geometry and sliding mode control theory. The results show that the sliding mode control method with input output feedback linearization can realize the accurate tracking of the output signals of the precise synchronous reluctance motor and the uncertain synchronous reluctance motor.

Key words: synchronous reluctance motor, input output feedback linearization, sliding mode control

CLC Number: 

  • O415.5
[1] KUROE Y, HAYASHI S. Analysis of bifurcation in power electronic induction motor drive systems[C]//20th Annual IEEE Power Electronics Specialists Conference. Piscataway NJ: IEEE Press, 1989:923-930.
[2] SUTO Z, NAGY I. Bifurcation phenomena of direct torque controlled induction machines due to discontinuities in the operation[C]//IEEE International Conference on Industrial Technology. Piscataweny, NJ:IEEE Press, 2005:496-501.
[3] ROBERT B, ALIN F, GOELDEL C. A periodic and chaotic dynamics in hybrid step motor-new experimental results[J].IEEE International Symposium on Industrial Electronics, 2001, 3(3):2136-2141.
[4] JING Z, YU C, CHEN G. Complex dynamics in a permanent-magnet reluctance motor model[J].Chaos, Solitons, and Fractals, 2004, 22(4):831-848.
[5] REN H, LIU D. Nonlinear feedback control of chaos in permanent magnet synchronous motor[J].IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2006, 53(1):45-50.
[6] WEI D Q, LUO X S, WANG B H, et al. Robust adaptive dynamic surface control of chaos in permanent magnet synchronous motor[J].Physics Letters A, 2007,363(1/2):71-77.
[7] 陈强,任雪梅. 基于多核最小二乘支持向量机的永磁同步电机混沌建模及其实时在线预测[J].物理学报,2010,59(4):2310-2318.
[8] 雷腾飞,陈恒,孟敬,等. 同步磁阻电机混沌系统的自适应滑模控制[J].洛阳理工学院学报, 2014,37(4):130-132.
[9] 李建昌,韦笃取,张波. 基于拉萨尔不变集定理控制同步磁阻电机的混沌振荡[J].微电机, 2013,41(4):5-7.
[10] 余红英,赵少雄,杨臻. 同步磁阻电机自适应混沌同步控制仿真研究[J].计算机测量与控制,2016,24(11):67-70.
[11] WANG Y W, WEN C Y, SOH Y C, et al. Reduced-order impulsive control for a class of nonlinear systems[J].International Journal of Robust and Nonlinear Control, 2009, 20(8): 892-898.
[12] 邹国棠,王政,程明.混沌电机驱动及其应用[M].北京:科学出版社, 2009.
[13] KHALIL H K. Nonlinear system[M].New Jersey: Prentice-Hall,2002.
[14] 吴雷,阳丽,郭鹏霄. Rucklidge系统的反馈线性化控制[J].广西师范大学学报(自然科学版),2017,35 (1):21-27.
[15] 郑凯锋,杨桂玲,房加志.阀控非对称缸系统的反馈线性化滑模控制[J].机床与液压,2017,45(5):151-154.
[16] HILBORN R C. Chaos and nonlinear dynamics: an introduction for scientists and engineers[M].London: Oxford University Press,1994.
[1] WU Lei, YANG Li, LI Qishang, XIAO Huapeng. Chaos Control of Synchronous Reluctance Motor Based on Small Gain Theorem [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 44-51.
[2] TANG Tang,LUO Xiaoshu,Lü Wande,LIU Xin. Sliding Mode Active Disturbance Rejection Control of Quadrotor Unmanned Aerial Vehicle [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 56-62.
[3] ZHAO Wei-qi, LIANG Jia-rong, LI Xia. Finite-time Terminal Sliding Mode Control for Singular Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(4): 73-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!