Journal of Guangxi Normal University(Natural Science Edition) ›› 2017, Vol. 35 ›› Issue (4): 1-9.doi: 10.16088/j.issn.1001-6600.2017.04.001

    Next Articles

A Cellular Automaton Model Connected to the ConductionRestitution Property of Cardiac Cells

ZHANG Xueliang,TAN Huili, BAI Kezhao, TANG Guoning,DENG Minyi*   

  1. College of Physical Science and Technology, Guangxi Normal University, Guilin Guangxi 541004, China
  • Online:2017-07-25 Published:2018-07-25

Abstract: Cellular automaton is an important method for studying cardiac signal dynamics, but the cells in traditional Greenberg-Hastings cellular automaton have the constant conduction velocity distribution, which cannot reflect the relation between the cardiac signal conduction velocity and the preceding state period. In this paper, a cellular automaton model connected to the conduction restitution of cardiac cells is established. In this model, the conduction velocity of the electrical cardiac signal depends on the preceding state period of the myocardial cells. With this model, the production and maintenance of stable spiral waves in myocardial tissue are simulated, and the phenomena of the Doppler and Eckhaus instability of spiral waves are exhibited, which can not be produced by the traditional Greenberg-Hastings cellular automaton. The causes of the above phenomena are analyzed in this paper. This work provides an useful guidence for further study of the electrical cardiac signal in the future.

Key words: cellular automaton, conduction restitution, spiral wave, Doppler instability, Eckhaus instability

CLC Number: 

  • O411.3
[1] JAKUBITH S, ROTERMUND H H, ENGEL W, et al. Spatiotemporal concentration patterns in a surface reaction: propagating and standing waves, rotating spirals, and turbulence[J].Physical Review Letters, 1990, 65(24):3013-3016.
[2] LIU Guiquan,WU Ningjie,YING Heping. The drift of spirals under competitive illumination in an excitable medium[J].Communications in Nonlinear Science and Numerical Simulation, 2013, 18(9):2398-2401.
[3] MA Jun, ZHANG Aihua, TANG Jun, et al. Collective behaviors of spiral waves in the networks of hodgkin-huxley neurons in presence of channel noise[J].Journal of Biological Systems, 2011, 18(1):243-259.
[4] GLASS L. Dynamics of cardiac arrhythmias[J]. Physics Today, 1996, 49 (8):40-45.
[5] NASH M P, PANFILOV A V. Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias[J].Progress in Biophysics and Molecular Biology, 2004, 85(3):501-522.
[6] PETROV V, Qi O, SWINNEY H L. Resonant pattern formation in a chemical system[J].Nature,1997, 388(6643):655-657.
[7] ZHANG Hong, CHEN Jiangxing, LI Youquan, et al. Control of spiral breakup by an alternating advective field[J].Journal of Chemical Physics, 2006, 125(20):204503.
[8] LIU Guiquan, YING Heping, LUO Honglei, et al. Suppression of spiral breakup in excitable media by local periodic forcing[J]. International Journal of Bifurcation and Chaos, 2017, 26(14):1650236.
[9] 马军,应和平,李延龙,等. 混沌信号驱动实现螺旋波和时空混沌抑制[J].郑州大学学报(理学版), 2006, 38(1):45-49.
[10] WEISS J N, QU Zhilin, CHEN Pengsheng, et al. The dynamics of cardiac fibrillation[J].Circulation,2005, 112(8):1232-1240.
[11] ZHENG Yi, WEI Daming, ZHU xin, et al. Ventricular fibrillation mechanisms and cardiac restitutions: an investigation by simulation study on whole-heart model[J]. Computers in Biology and Medicine, 2015, 63:261-268.
[12] LOMBARDO D M, FENTON F H, NARAYAN S M, et al. Comparison of detailed and simplified models of human atrial myocytes to recapitulate patient specific properties[J].Plos Computational Biology, 2016, 12(8):e1005060.
[13] IDEKER R E, ROGERS J M, GRAY R A. Steepness of the restitution curve: a slippery slope?[J].Journal of Cardiovascular Electrophysiology, 2002, 13(11):1173-1175.
[14] 刘慕仁,邓敏艺,孔令江. 舆论传播的元胞自动机模型(Ⅰ)[J].广西师范大学学报(自然科学版), 2002, 20(2):1-3.
[15] 邝华,孔令江,刘慕仁. VDR混合交通流模型的研究[J].四川师范大学学报(自然科学版), 2007, 30(5):619 -622.
[16] 覃松,邓敏艺,孔令江. 融资融券影响的元胞自动机股票市场模拟研究[J].广西师范大学学报(自然科学版), 2011, 29(4):12-15.
[17] GREENBERG J M, HASTINGS S P. Spatial patterns for discrete models of diffusion in excitable media[J].Siam Journal on Applied Mathematics, 1978, 34(3):515-523.
[18] 张立升,邓敏艺,孔令江,等.用元胞自动机模型研究二维激发介质中的行波[J].广西师范大学学报(自然科学版),2009,27(2):9-12.
[19] DENG Minyi, CHEN Xiqiong, TANG Guoning. The effect of cellular aging on the dynamics of spiral waves[J].Chinese Physics B, 2014, 23(12): 120503.
[20] DENG Minyi, ZHANG Xueliang, DAI Jingyu. Effects of abnormal excitation on the dynamics of spiral waves[J].Chinese Physics B, 2016, 25(1): 010504.
[21] BUB G, SHRIER A, GLASS L. Spiral wave generation in heterogeneous excitable media[J].Physical Review Letters,2002, 88(5): 058101.
[22] 戴静娱,张学良,邓敏艺,等.位置扰动对激发介质中螺旋波动力学行为的影响[J].广西师范大学学报(自然科学版),2016,34(2):8-16.
[23] ITO H, GLASS L. Spiral breakup in a new model of discrete excitable media[J].Physical Review Letters, 1991,66(5):671-674.
[24] 欧阳颀. 反应扩散系统中螺旋波的失稳[J].物理,2001,30(1): 30-36.
[25] ZHANG Lisheng, DENG Minyi, KONG Lingjiang, et al. Cellular automaton simulations for target waves in excitable media[J].Communifications in Theoritical Physics, 2010, 53:171-174.
[1] HUANG Wen,TAN Huili. Effect of Cardiac Memory on Spiral Wave [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 1-8.
[2] DAI Jingyu, ZHANG Xueliang, DENG Minyi, TAN Huili. Effect of Position Perturbation for Spiral Waves in Excitable Media [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(2): 8-14.
[3] CAI Mei-jing, KUANG Hua, BAI Ke-zhao, CHEN Ruo-hang. Effects of Internal Layout and Exit Position of New-style Cinema on Evacuation Efficiency [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(3): 1-6.
[4] PAN Jiang-hong, BAI Ke-zhao, KUANG Hua, KONG Ling-jiang. Cellular Automaton Traffic Flow Model Considering Effect of Visibility [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 1-4.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!