Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (2): 55-68.doi: 10.16088/j.issn.1001-6600.2023050805

Previous Articles     Next Articles

AA-CAES Plant and Integrated Demand Response Based Wind Abandonment and Consumption Strategy for the Heating Period

YAN Wenwen, WEN Zhong*, WANG Shuang, LI Guoxiang, WANG Boyu, WU Yi   

  1. School of Electrical and New Energy, China Three Gorges University, Yichang Hubei 443002, China
  • Received:2023-05-08 Published:2024-04-22

Abstract: In the context of the "double carbon" target, this paper proposes an integrated energy system (IES) based on Advanced Adiabatic Compressed Air Energy Storage (AA-CAES) and Integrated Demand Response (IDS) to solve the large-scale wind abandonment problem caused by the "heat-and-power" model of CHP units. Firstly, a coupled operation model of CHP units and AA-CAES plants is established on both sides of the "source-storage" side to analyze the mechanism of coupled operation to achieve thermal-electrolytic coupling. Secondly, price-based and alternative demand response mechanisms are introduced on the "load" side to explore the potential of load-side optimization. Then, a carbon capture system and a ladder-type carbon trading mechanism are introduced in IES to constrain carbon emissions, and a fuzzy opportunity planning constraint model is introduced to analyze the impact of scenery uncertainty on system dispatch based on the objective of minimum carbon emissions and lowest comprehensive cost of IES operation. Finally, the actual data of a region in Northwest China are used to verify the calculation. AA-CAES power plant coupled operation can improve the wind power consumption rate by 84.55%, and reduce the total cost and carbon emission by 11.42% and 20.28% compared with uncoupled operation. The introduction of comprehensive demand response mechanism can further improve the wind power consumption rate by 35.00%, reduce the total cost and carbon emission by 20.93% and 24.43%. The increase of scenery uncertainty will increase the interaction cost with external grid.

Key words: combined heat and power, wind power consumption, advanced adiabatic compressed air energy storage, integrated demand response, carbon capture systems

CLC Number:  TM73
[1] 李晖,刘栋,姚丹阳.面向碳达峰碳中和目标的我国电力系统发展研判[J].中国电机工程学报,2021,41(18):6245-6258. DOI: 10.13334/j.0258-8013.pcsee.210050.
[2] MALLAPATY S. How China could be carbon neutral by mid-century[J]. Nature, 2020, 586(7830): 482-483. DOI: 10.1038/d41586-020-02927-9.
[3] 陈国平,董昱,梁志峰.能源转型中的中国特色新能源高质量发展分析与思考[J].中国电机工程学报,2020,40(17):5493-5505. DOI: 10.13334/j.0258-8013.pcsee.200984.
[4] 国家能源局.2018年风电并网运行情况[EB/OL].(2019-01-28)[2023-02-25]. http://www.nea.gov.cn/2019-01/28/c_137780779.htm.
[5] 粟世玮,郝翊彤,宋玉娇,等.含风电-氢能-电转气的园区综合能源系统优化调度[J].广西师范大学学报(自然科学版),2023,41(1):48-57. DOI: 10.16088/j.issn.1001-6600.2022030306.
[6] 叶泽,李湘旗,姜飞,等.考虑最优弃能率的风光火储联合系统分层优化经济调度[J].电网技术,2021,45(6):2270-2279. DOI: 10.13335/j.1000-3673.pst.2020.1116.
[7] 徐姗姗,郭通,王月,等.大规模火电灵活性改造背景下电-热能源集成系统优化调度[J].电力建设,2021,42(5):27-37. DOI: 10.12204/j.issn.1000-7229.2021.05.004.
[8] 曹钰,房磊.“双碳”背景下热电机组-储热联合运行消纳弃风策略[J].中国电力,2022,55(10):142-149,160. DOI: 10.11930/j.issn.1004-9649.202203113.
[9] 高新勇,金晶,张云鹏,等.基于模拟退火算法的热电机组耦合蓄热装置的运行策略[J].热能动力工程,2022,37(11):97-103,152. DOI: 10.16146/j.cnki.rndlgc.2022.11.013.
[10] HUANG Y H, CHEN Q, ZHANG Z H, et al. Optimal scheduling of combined electric and heating considering the control process of CHP unit and electric boiler[J]. Processes, 2023, 11(3): 753. DOI: 10.3390/pr11030753.
[11] 葛维春,高漫灵,张艳军,等.电锅炉实现风电消纳的综合能源系统最优经济调度[J].南方电网技术,2019,13(8):59-66. DOI: 10.13648/j.cnki.issn1674-0629.2019.08.009.
[12] 崔杨,陈志,严干贵,等.基于含储热热电联产机组与电锅炉的弃风消纳协调调度模型[J].中国电机工程学报,2016,36(15):4072-4081. DOI: 10.13334/j.0258-8013.pcsee.152406.
[13] LI H B, WANG Y B, PANG X F, et al. Optimal scheduling method of cogeneration system with heat storage device based on memetic algorithm[J]. Energy Engineering, 2023, 120(2): 317-343. DOI: 10.32604/ee.2023.023715.
[14] 尹斌鑫,苗世洪,李姚旺,等.先进绝热压缩空气储能在综合能源系统中的经济性分析方法[J].电工技术学报,2020,35(19):4062-4075. DOI: 10.19595/j.cnki.1000-6753.tces.191064.
[15] 蔡杰,张世旭,廖爽,等.考虑AA-CAES装置热电联储/供特性的微型综合能源系统优化运行策略[J].高电压技术,2020,46(2):480-489. DOI: 10.13336/j.1003-6520.hve.20200131012.
[16] CHEN X J, HUANG L S, ZHANG X Q, et al. Robust optimal dispatching of wind fire energy storage system based on equilibrium optimization algorithm[J]. Frontiers in Energy Research, 2021, 9: 754908. DOI: 10.3389/fenrg.2021.754908.
[17] ZHANG Z, ZHOU M, CHEN Y B, et al. Exploiting the operational flexibility of AA-CAES in energy and reserve optimization scheduling by a linear reserve model[J]. Energy, 2023, 263(Part E): 126084. DOI: 10.1016/j.energy.2022.126084.
[18] 时帅,刘杰,米阳,等.基于先进绝热压缩空气储能站的电-热综合能源系统优化运行方法[J/OL].电测与仪表:1-11[2023-02-25].http://kns.cnki.net/kcms/detail/23.1202.TH.20220114.1751.011.html.
[19] 白珈于,薛小代,陈来军,等.先进绝热压缩空气储能热电联供模式下的运行可行域分析[J].电力自动化设备,2019,39(8):79-85,112. DOI: 10.16081/j.epae.201908022.
[20] WANG X, A X, CHEN X T, et al. Optimal dispatching of ladder-type carbon trading in integrated energy system with advanced adiabatic compressed air energy storage[J]. Frontiers in Energy Research, 2022, 10: 933786. DOI: 10.3389/fenrg.2022.933786.
[21] 魏震波,马新如,郭毅,等.碳交易机制下考虑需求响应的综合能源系统优化运行[J].电力建设,2022,43(1):1-9. DOI: 10.12204/j.issn.1000-7229.2022.01.001.
[22] HUANG W J, ZHANG N, KANG C Q, et al. From demand response to integrated demand response: review and prospect of research and application[J]. Protection and Control of Modern Power Systems, 2019, 4(1): 12. DOI: 10.1186/s41601-019-0126-4.
[23] 丁雨昊,吕干云,刘永卫,等.考虑碳排放目标约束和需求侧响应的综合能源系统日前优化调度[J].南方电网技术,2022,16(8):1-11. DOI: 10.13648/j.cnki.issn1674-0629.2022.08.001.
[24] 陈登勇,刘方,刘帅.基于阶梯碳交易的含P2G-CCS耦合和燃气掺氢的虚拟电厂优化调度[J].电网技术,2022,46(6):2042-2053. DOI: 10.13335/j.1000-3673.pst.2021.2177.
[25] 孙惠娟,蒙锦辉,彭春华.风-光-水-碳捕集多区域虚拟电厂协调优化调度[J].电网技术,2019,43(11):4040-4049. DOI: 10.13335/j.1000-3673.pst.2018.2460.
[26] 孙惠娟,刘昀,彭春华,等.计及电转气协同的含碳捕集与垃圾焚烧虚拟电厂优化调度[J].电网技术,2021,45(9):3534-3544. DOI: 10.13335/j.1000-3673.pst.2020.1720.
[27] 张晓辉,刘小琰,钟嘉庆.考虑奖惩阶梯型碳交易和电-热转移负荷不确定性的综合能源系统规划[J].中国电机工程学报,2020,40(19):6132-6142. DOI: 10.13334/j.0258-8013.pcsee.191302.
[28] 董海鹰,贠韫韵,马志程,等.计及多能转换及光热电站参与的综合能源系统低碳优化运行[J].电网技术,2020,44(10):3689-3699. DOI: 10.13335/j.1000-3673.pst.2020.0449.
[29] 张大海,贠韫韵,王小君,等.计及光热电站及建筑热平衡的冷热电综合能源系统优化运行[J].高电压技术,2022,48(7):2505-2514. DOI: 10.13336/j.1003-6520.hve.20220828.
[30] 蔡杰,张松岩,杜治,等.含光热集热模块的先进绝热压缩空气储能系统容量配置策略[J].电力自动化设备,2020,40(7):165-173. DOI: 10.16081/j.epae.202007027.
[1] NI Zhi, WEN Zhong, WANG Can, ZHANG Yewei, YANG Shengpeng, WANG Zhenyu. Optimal Operation of Integrated Energy System with Photothermal MRH and Gas Doping [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 54-66.
[2] ZHAO Di, WEN Zhong, WU Qian, YAN Wenwen, QIN Zhiyin, WANG Boyu. Low-Carbon Optimal Scheduling of Integrated Energy System under Electro-Thermal Coupling of 5G Base Station and Concentrated Solar Power Plant [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 47-60.
[3] XIAO Zhiheng, LIU Huijia. Improved TOPSIS for Node Vulnerability Assessment of Distribution Network Based on Game Theory [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 20-30.
[4] WANG Hui, FANG Hang, JIN Zirong, LI Xuyang. Two-Tier Optimal Scheduling of Household Energy Based on Demand Response [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 38-47.
[5] SU Shiwei, HAO Yitong, SONG Yujiao, ZHANG Lei, ZHI Li, HAO Yifan. Optimal Dispatch of Park Integrated Energy System Including Wind Power-Hydrogen Energy-P2G [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 48-57.
[6] WANG Yifan, WANG Hui, LI Xuyang, FANG Hang, WANG Baoquan, JIN Zirong. Survey of Capacity Allocation of Microgrid Hybrid Energy Storage System Based on Hydrogen Energy Storage [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 18-36.
[7] GAN Youchun, WANG Can, HE Xuhui, ZHANG Yu, ZHANG Xuefei, WANG Fan, YU Yazhou. Joint Optimal Operation of Integrated Electricity-Hydrogen-Heat Energy System Based on Concentrating Solar Power Plant and Flexible Load [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 69-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YUAN Jingjing, ZHENG Yuzhao, XU Chenfeng, YIN Tingjie. Advances in Cytoplasmic Delivery Strategies for Non-Endocytosis-Dependent Biomolecules[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 1 -8 .
[2] TU Guangsheng, KONG Yongjun, SONG Zhechao, YE Kang. Research Progress and Technical Difficulties of Reversible Data Hiding in Encrypted Domain[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 1 -15 .
[3] YANG Yangyang, ZHU Zhenting, YANG Cuiping, LI Shihao, ZHANG Shu, FAN Xiulei, WAN Lei. Research Progress of Anaerobic Digestion Pretreatment of Excess Activated Sludge Based on Bibliometric Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 16 -29 .
[4] XU Lunhui, LI Jinlong, LI Ruonan, CHEN Junyu. Missing Traffic Data Recovery for Road Network Based on Dynamic Generative Adversarial Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 30 -40 .
[5] YANG Hai, XIE Yaqin. Regional Energy Storage Allocation Strategy of 5G Base Station Based on Floyd Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 41 -54 .
[6] GAN Youchun, WANG Can, HE Xuhui, ZHANG Yu, ZHANG Xuefei, WANG Fan, YU Yazhou. Joint Optimal Operation of Integrated Electricity-Hydrogen-Heat Energy System Based on Concentrating Solar Power Plant and Flexible Load[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 69 -83 .
[7] WANG Xuyang, WANG Changrui, ZHANG Jinfeng, XING Mengyi. Multimodal Sentiment Analysis Based on Cross-Modal Cross-Attention Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 84 -93 .
[8] WANG Weiduo, WANG Yisong, YANG Lei. Descriptive Solution of the Answer Set Programming for Cloud Resource Scheduling[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 94 -104 .
[9] YU Qian, CHEN Qingfeng, HE Naixu, HAN Zongzhao, LU Jiahui. Genetic Algorithm for Community Detection Accelerated by Matrix Operations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 105 -119 .
[10] LONG Fang, CAI Jing, ZHU Yan. Analysis of Reliability in a Multicomponent Stress-Strength Model for Lomax Distribution under Progressive type-Ⅱ Hybrid Censoring[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 120 -130 .