Journal of Guangxi Normal University(Natural Science Edition) ›› 2010, Vol. 28 ›› Issue (2): 30-33.
Previous Articles Next Articles
XU Shang-jin, SUN Li-min, LIU Cui-ming, BAI Hui-juan
CLC Number:
[1] 徐尚进,朱雁,邓芸萍.qp阶群陪集图的CI性[J].广西大学学报:自然科学版,2007,32(3):278-281. [2] ALSPACH B.Point-symmetric graphs and digraphs of prime order and transitive permutation groups of prime degree[J].J Combin Theory:B,1973,15(1):12-17. [3] DU Shao-fei,WANG Ru-ji,XU Ming-yao.On the normality of Cayleydigraphs of order twice a prime[J].Australas J Combin,1998,18:227-234. [4] LU Zai-ping,XU Ming-yao.On the normality of Cayley graphs of order pq[J].Australas J Combin,2003,27:81-93. [5] 徐尚进,郭松涛,王丽,等.3p2阶连通4度Cayley图的正规性[J].广西师范大学学报:自然科学版,2009,27(2):30-33. [6] FANG Xing-gui,LI Cai-heng,WANG Jie,et al.On cubic Cayleygraphs of finite simple groups[J].Discrete Math,2002,244(1/3):67-75. [7] XU Shang-jin,FANG Xin-gui,WANG Jie,et al.On cubic s-Arc-transitive Cayley graphs of finite simple groups[J].European J Combin,2005,26(1):133-143. [8] XU Shang-jin,FANG Xin-gui,WANG Jie,et al.5-Arc transitive cubic Cayley graphs on finite simple groups[J].European J Combin,2007,28(3):1023-1036. [9] YU Hui-xia,ZHOU Jin-xin,WANG Ling-li.Cubic Cayley graph of order 2p2[J].Advances in Mathematics,2006,35(5):581-589. [10] 孟庆云,王长群.两类2pq阶3度Cayley图的正规性[J].厦门大学学报:自然科学版,2009,48(1):6-10. [11] ZHANG Cui,ZHOU Jin-xin,FENG Yan-quan.Automorphisms of cubic Cayley graphs of order 2pq[J].Discrete Math,2009,309(9):2687-2695. [12] 张远达.有限群的构造[M].北京:科学出版社,1982. [13] 徐明曜.有限群导引[M].2版.北京:科学出版社,1999. [14] GORENSTEIN D.Finite simple groups[M].New York:Plenum Press,1982:12-14. [15] 施武杰.关于单K4群[J].科学通报,1991,36(17):1281-1283. [16] 张良才,陈顺民.一类2pq2阶群的自同构群[J].海南大学学报:自然科学版,2003,21(4):308-311. [17] BIGGS N.Algebraic graph theory[M].2nd ed.Cambridge:Cambridge University Press,1993. |
[1] | LI Jingjian, ZHU Wenying, XIE Yating. One-Regular Cayley Graphs of Valency Odd Prime [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 121-125. |
[2] | HUA Xiao-hui, CHEN Li. Isomorphisms and Automorphisms of Coset Graphs [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 68-72. |
[3] | XU Shang-Jin, LI Ping-shan, HUANG Hai-hua, LI Jing-jian. 8-Valent 1-Regular Cayley Graphs WhoseVertex Stabilizer is Z4×Z2 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 59-66. |
[4] | XU Shang-Jin, QIN Yan-li, ZHANG Yue-feng, LI Jing-jian. 1-Regular Cayley Graphs of Valency 9 with Elementary Abelian Vertex Stabilizer [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(4): 66-71. |
[5] | LI Jing-jian, XU Shang-jin, WANG Rui. 1-Regular Hexavalent Cayley Graphs with Abelian Point Stabilizer [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(2): 51-54. |
[6] | XU Shang-jin, ZHANG Xiao-jun, KANG Zhe, LI Jing-jian. Tetravalent Connected Half-transitive Graphs of Order qp2 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 54-58. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 24
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 115
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|