Journal of Guangxi Normal University(Natural Science Edition) ›› 2015, Vol. 33 ›› Issue (4): 68-72.doi: 10.16088/j.issn.1001-6600.2015.04.012

Previous Articles     Next Articles

Isomorphisms and Automorphisms of Coset Graphs

HUA Xiao-hui, CHEN Li   

  1. College of Mathematics and Information Science, Henan Normal University, Xinxiang Henan 453007, China
  • Received:2015-07-04 Online:2015-12-25 Published:2018-09-21

Abstract: Let G be a finite group, H a core-free subgroup of G and D a union of several double-cosets of the form HgH with g$\notin$H such that D=D-1. Let Cos(G, H, D) be the coset graph of G with respect to H and D, and let A=Aut(Cos(G, H, D)). Denote the right multiplication action of G on Ω=[G:H] by RH (G), the set of right cosets of H in G, and denote the automorphism of G induced by the conjugate of g∈G on G by σ(g). In this paper, it is shown that NA(RH(G))=RH(G)Aut(G, H, D) and RH (G)∩ Aut(G, H, D)=I(H), where Aut(G, H, D)= {α∈Aut(G)|Hα=H, Dα=D}and I(H)={σ(h)|h∈H}, and it is also shown that Cos(G, H, D) is a CI-graph if and only if for any σ∈SΩ with RH(G)σ≤A, and that there exists a∈A such that RH(G)a=RH(G)σ. The CI-propety problem and isomorphism count problem of a class coset graphs on linear groups are considered in application.

Key words: rc-transitive graph, coset graph, Cayley graph

CLC Number: 

  • O157.5
[1] XU Ming-yao. Automorphism groups and isomorphisms of Cayley digraphs[J].Discrete Mathematics, 1998, 182(1/2/3):309-319.
[2] SABIDUSSI G. Vertex-transitive graphs[J]. Monash Math, 1964, 68(5):426-438.
[3] GODSIL C D. On the full automorphism group of a graph[J]. Combinatorica, 1981, 1(3):243-256.
[4] 徐尚进, 张翠,赵旭波,等. 4p阶内2-闭群的m-DCI-性[J]. 广西师范大学学报:自然科学版, 2006,24(1):45-48.
[5] 徐尚进, 李靖建,靳伟,等. qp阶亚循环群的弱m-DCI性[J]. 广西师范大学学报:自然科学版, 2007,25(1):10-13.
[6] 徐尚进,朱雁,邓芸萍. qp阶群陪集图的CI性[J]. 广西大学学报:自然科学版,2007,32(3):278-281.
[7] 朱雁,孙莉敏,白会娟,等. Sp陪集图的CI性[J]. 广西师范学院学报:自然科学版,2009,26(3):1-5.
[8] BABAI L. Isomorphism problem for a class of point-symmetric structures[J]. Acta Math Acad Sci Hung, 1977, 29(3):329-336.
[9] 胡佩特. 有限群论:第一卷第一分册[M] .姜豪,俞曙霞,译.福州:福建人民出版社, 1992.
[10] DIXON J D, MORTIMER B. Permutation groups[M]. New York: Springer-Verlag, 1996.
[11] BIGGS N. Algebraic graph theory[M]. 2nd ed.Cambridge: Cambridge University Press, 1993.
[12] LI Cai-heng, NIU Liang, SERESS A, et al. The vertex primitive and vertex bi-primitive s-arc regular graphs[J]. J Combin Theory B, 2010, 100(4):359-366.
[13] CAMERON P J, OMIDI G R, TAYFEH-REZAIE B. 3-Designs from PGL(2,q)[J]. Electron J Combin, 2006,13:R50.
[14] HUA Xiao-hui, FENG Yan-quan, LEE J. Pentavalent symmetric graphs of order 2pq[J]. Discrete Math, 2011, 311(20):2259-2267.
[15] FANG Xin-gui, PREAGER C E. Fintte two-arc transitive graphs admitting a Suzuki simple group[J]. Comm Algebra, 1999, 27(8):3727-3754.
[16] LIEBECK M W, PRAEGER C E, SAXL J. A classification of the maximal subgroups of the finite alternating and symmetric groups[J]. J Algebra, 1987, 111(2):365-383.
[17] BOSMA W, CANNON J, PLAYOUST C. The MAGMA algebra system I: the user language[J]. J Symbolic Comput, 1997, 24(3/4):235-265.
[18] GUO Song-tao, ZHOU Jin-xin, FENG Yan-quan. Pentavalent symmetric graphs of order 12p[J]. Electron J Combin, 2011, 18(1):P233.
[1] LI Jingjian, ZHU Wenying, XIE Yating. One-Regular Cayley Graphs of Valency Odd Prime [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 121-125.
[2] XU Shang-Jin, LI Ping-shan, HUANG Hai-hua, LI Jing-jian. 8-Valent 1-Regular Cayley Graphs WhoseVertex Stabilizer is Z4×Z2 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 59-66.
[3] XU Shang-Jin, QIN Yan-li, ZHANG Yue-feng, LI Jing-jian. 1-Regular Cayley Graphs of Valency 9 with Elementary Abelian Vertex Stabilizer [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(4): 66-71.
[4] LI Jing-jian, XU Shang-jin, WANG Rui. 1-Regular Hexavalent Cayley Graphs with Abelian Point Stabilizer [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(2): 51-54.
[5] XU Shang-jin, ZHANG Xiao-jun, KANG Zhe, LI Jing-jian. Tetravalent Connected Half-transitive Graphs of Order qp2 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 54-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!