Journal of Guangxi Normal University(Natural Science Edition) ›› 2019, Vol. 37 ›› Issue (2): 121-125.doi: 10.16088/j.issn.1001-6600.2019.02.014

Previous Articles     Next Articles

One-Regular Cayley Graphs of Valency Odd Prime

LI Jingjian1,2*, ZHU Wenying1, XIE Yating1   

  1. 1.School of Mathematics and Information Sciences, Guangxi University, Nanning Guangxi 530004, China;
    2.Guangxi Colleges and Universities Key Laboratory of Mathematics and Its Applications, Nanning Guangxi 530004, China
  • Received:2018-05-05 Online:2019-04-25 Published:2019-04-28

Abstract: A graph Γ is called 1-regular if Aut(Γ) acts regularly on its arcs. In this paper, the 1-regular Cayley graphs of valency odd prime is classified completely, and the following conclusions are obtained: a 1-regular Cayley graph of valency odd prime is either a bi-normal bi-Cayley graph or a normal covering of the known six types of core-free ones up to isomorphism, which are three infinite types, three scattered graphs, including two graphs of valency 11 and a graph of valency 23.

Key words: 1-regular, Cayley graph, core-free, normal quotient, valency odd prime

CLC Number: 

  • O157
[1] MARUŠIČ D. A family of one-regular graphs of valency 4[J]. European Journal of Combinatorics, 1997, 18(1): 59-64. DOI:10.1006/eujc.1995.0076.
[2] MALNIČ A, MARUŠIČ D, SEIFTER N. Constructing infinite one-regular graphs[J]. European Journal of Combinatorics, 1999, 20(8):845-853. DOI:10.1006/eujc.1999.0338.
[3] FRUCHT R. A one-regular graph of degree three[J]. Canadian Journal of Mathematics, 1952, 4: 240-247. DOI: 10.4153/CJM-1952-002-09.
[4] CONDER M D E, PRAEGER C E. Remarks on path-transitivity in finite graphs[J]. European Journal of Combinatorics, 1996,17(4):371-378. DOI:10.1006/eujc.1996.0030.
[5] 李靖建,徐尚进,王蕊.具有交换点稳定子群的6度1-正则Cayley图[J].广西师范大学学报(自然科学版),2013, 31(2): 51-54. DOI:10.16088/j.issn.1001-6600.2013.02.020.
[6] 李靖建,徐尚进,杨旭.6度1-正则Cayley图[J].纯粹数学与应用数学,2013, 29(5): 472-476. DOI:10.3969/j.issn.1008-5513.2013.05.005.
[7] 徐尚进,秦艳丽,张跃峰,等.具有初等交换点稳定子的9度1-正则Cayley图[J].广西师范大学学报(自然科学版),2014, 32(4): 66-71. DOI: 10.16088/j.issn.1001-6600.2014.04.011.
[8] 徐尚进,李平山,黄海华,等.点稳定子为$\mathbb{Z}_{4}\times \mathbb{Z}_{2}$ 的8度1-正则Cayley图[J].广西师范大学学报(自然科学版),2015, 33(1): 59-66. DOI: 10.16088/j.issn.1001-6600.2015.01.010.
[9] LI Jingjian, MA Jicheng. On pentavalent arc-transitive graphs[J]. Algebra Colloquium, 2018, 25(2): 189-202. DOI: 10.1142/S1005386718000135.
[10] LI Jingjian, LING Bo, MA Jicheng. On tetravalent s-regular Cayley graphs[J]. Journal of Algebra and Its Applications, 2017, 16(10):1750195(17 pages). DOI:10.1142/S021949881750195X.
[11] LI Jingjian, XU Shangjin, CAO Mengyue, et al. On tetravalent symmetric dihedrants[J]. Applied Mathematics and Computation, 2017, 306: 49-55. DOI: 10.1016/j.amc.2017.02.027.
[12] LI Jingjian, LING Bo, LIU Guodong. A characterisation on arc-transitive graphs of prime valency[J]. Applied Mathematics and Computation, 2018, 325: 227-233. DOI: 10.1016/j.amc.2017.12.024.
[13] ARCHDEACON D, ŠIRÁ$\check{N}$ J, ŠKOVIERA M. Self-dual regular maps from medial graphs[J]. Acta Mathematica Universitatis Comenianae, 1992, 61(1):57-64.
[14] GARBE D. A generalization of the regular maps of type {4, 4}b,c and {3, 6}b,c[J]. Canadian Mathematical Bulletin, 1969,12(3): 293-297. DOI: 10.4153/CMB-1969-037-6.
[15] NEDELA R, ŠKOVIERA M. Regular maps from voltage assignments and exponent groups[J]. European Journal of Combinatorics,1997,18(7):807-823. DOI: 10.1006/eujc.1996.0138.
[16] NEDELA R, ŠKOVIERA M. Exponents of orientable maps[J]. Proceedings of the London Mathematical Society, 1997,75(1): 1-31. DOI: 10.1112/S0024611597000245.
[17] ŠOVIERA M. A contribution to the theory of voltage graphs[J]. Discrete Mathematics, 1986, 61(2/3): 281-292. DOI:10.1016/0012-365X(86)90099-3.
[18] WILSON S. The smallest nontoroidal chiral maps[J]. Journal of Graph Theory, 1978, 2(4): 315-318. DOI: 10.1002/jgt.3190020405.
[19] LI Jingjian, LU Zaiping. Cubic s-arc transitive Cayley graphs[J]. Discrete Mathematics, 2009, 309(20): 6014-6025. DOI: 10.1016/j.disc.2009.05.002.
[20] LI Caiheng. The finite primitive permutation groups containing an abelian regular subgroup[J]. Proceedings of the London Mathematical Society, 2003, 87(3):725-747. DOI:10.1112/S0024611503014266.
[21] LIEBECK M W,PRAEGER C E, SAXL J. A classification of the maximal subgroups of the finite alternating and symmetric groups[J]. Journal of Algebra, 1987, 111(2): 365-383. DOI: 10.1016/0021-8693(87)90223-7.
[22] CONWAY J H, CURTIS R T, NORTON S P, et al. Atlas of finite groups[M]. Oxford: Clarendon Press, 1985: 7-71.
[23] LI Caiheng, SERESSÁ, SONG Shujiao. s-Arc-transitive graphs and normal subgroups[J]. Journal of Algebra, 2015, 421:331-348. DOI:10.1016/j.jalgebra.2014.08.032.
[1] HUA Xiao-hui, CHEN Li. Isomorphisms and Automorphisms of Coset Graphs [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 68-72.
[2] XU Shang-Jin, LI Ping-shan, HUANG Hai-hua, LI Jing-jian. 8-Valent 1-Regular Cayley Graphs WhoseVertex Stabilizer is Z4×Z2 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 59-66.
[3] XU Shang-Jin, QIN Yan-li, ZHANG Yue-feng, LI Jing-jian. 1-Regular Cayley Graphs of Valency 9 with Elementary Abelian Vertex Stabilizer [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(4): 66-71.
[4] LI Jing-jian, XU Shang-jin, WANG Rui. 1-Regular Hexavalent Cayley Graphs with Abelian Point Stabilizer [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(2): 51-54.
[5] XU Shang-jin, ZHANG Xiao-jun, KANG Zhe, LI Jing-jian. Tetravalent Connected Half-transitive Graphs of Order qp2 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 54-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!