Journal of Guangxi Normal University(Natural Science Edition) ›› 2020, Vol. 38 ›› Issue (4): 132-139.doi: 10.16088/j.issn.1001-6600.2020.04.016

Previous Articles    

Hydrochemical Characteristics and Main Ion Sourcesof Shallow Groundwater in Zihe River Source Region, Shandong, China

YOU Jing1,2, QI Yueming1*, SHAO Guangyu3, MA Chao3, YANG Yaqi1, PEI Yifeng1   

  1. 1. School of Resources and Geosciences, China University of Mining and Technology, Xuzhou Jiangsu 221116, China;
    2. Shanghai Institute of Geological Engineering Exploration, Shanghai 200072, China;
    3. Shangdong Institute of GeologicalEngineering Exploration, Jinan Shandong 250014, China
  • Received:2019-04-28 Published:2020-07-13

Abstract: The hydrogeological site investigation and hydrogeochemical methods were used to study the chemical characteristics and main ion sources of shallow groundwater in the source region of the Zihe River. The research showed that there are three types of shallow groundwater in the source region of the Zihe River:Quaternary loose pore water, carbonate rock karst groundwater and massive rock weathered fissure water. The water quality types are respectively:HCO3·SO4-Ca·Mg type, HCO3·SO4-Ca·Mg type and HCO3·SO4-Ca type. The concentrations of calcium, magnesium and bicarbonate ions in the three types of groundwater are relatively stable in the aquifer, while the concentrations of sodium, potassium, nitrate and chloride in the groundwater of the study area vary greatly, which are affected by environmental factors. As the main water supply target, the main chemical components of carbonate karst groundwater, calcium ions are mainly derived from the dissolution of dolomite and calcite, and partly from the infiltration of chloride ions and nitrate ions and the dissolution of gypsum. Magnesium ion is derived from the dissolution of dolomite; bicarbonate ion is mainly derived from the co-dissolution of calcite and dolomite, and secondly by rainfall replenishment; sulfate ion has three sources, but mainly from the dissolution of gypsum layer and the oxidation of pyrite. The comprehensive results showed that the groundwater quality in the source area of the Zihe River is good, and all the indicators have reached the groundwater Class III water quality standard. The shallow groundwater quality is mainly related to the precipitation, groundwater flow conditions and bare or shallow burial of the carbonate. The research will provide a scientific decision-making basis for the planning and construction of karst groundwater source areas in the source region of the Zihe River, and rational utilization and protection of karst groundwater resources.

Key words: Zihe River, karst groundwater, hydrochemical characteristics, hydrogeochemistry

CLC Number: 

  • X36
[1] 姚普. 珠江三角洲经济区地下水化学特征分析[J]. 地下水,2013,35(6):43,136.
[2] 刘伟江,袁祥美,张雅,等. 贵阳市岩溶地下水水化学特征及演化过程分析[J]. 地质科技情报,2018,37(6):245-251.
[3] 王珺瑜,王家乐,靳孟贵. 济南泉域岩溶水水化学特征及其成因[J]. 地球科学,2017,42(5):821-831.
[4] 董维红,苏小四,侯光才,等. 鄂尔多斯白垩系地下水盆地地下水水化学类型的分布规律[J]. 吉林大学学报(地球科学版),2007(2):288-292.
[5] 李贵恒,冯建国,鲁统民,等. 泰莱盆地地下水水化学特征及水质评价[J]. 水电能源科学,2019,37(4):52-55.
[6] 袁建飞,徐芬,刘慧中,等.基于水化学和同位素的典型岩溶水系统溶质演化过程:以西昌市仙人洞为例[J].科学技术与工程,2019,19(17):76-83.
[7] 王广才,沈照理. 平顶山矿区岩溶水水文地球化学模拟及其应用[J]. 中国科学,1998(3):245-249.
[8] 齐跃明,李鑫,杨雅琪,等.中美水资源研究现状与发展展望[J].西南大学学报(自然科学版),2019,44(5):95-102.
[9] ZHOU Q, LU C N, SINGH V P,et al. Rainfall-runo simulation in karst dominated areas based on a coupled conceptual hydrological model[J]. Journal of Hydrology, 2019, 573: 524-533.
[10]KALHOR K, GHASEMIZADEH B, RAJIC L, et al. Assessment of groundwater quality and remediation in karst aquifers: A review[J]. Groundwater for Sustainable Development, 2019,8:104-121.
[11]SAPPA G, BARBIERI M, ERGUL S, et al. Hydrogeological conceptual model of groundwater from carbonate aquifers using environmental isotopes (18O, 2H) and chemical tracers: a case study in southern Latium region, Central Italy[J]. Journal of Water Resource and Protection,2012,4(9):695-716.
[12]齐跃明, 袁冬梅, 马超, 等. 淄河源区岩溶地下水可开采资源量评价[J]. 西南师范大学学报(自然科学版),2019,44(1):65-72.
[13]周迅,叶永红. 地下水舒卡列夫水化学分类法的改进及应用—以福建省晋江市地下水为例[J]. 资源调查与环境,2014,35(4):299-304.
[14]洪涛,谢运球,喻崎雯,等. 乌蒙山重点地区地下水水化学特征及成因分析[J]. 地球与环境,2016,44(1):11-18.
[15]ABDELILADER R, LARBI D, RIHAB H,et al. Geochemical characterization of groundwater from shallow aquifer surrounding Fetzara Lake N. EAlgeria[J]. Arabian Journal of Geosciences, 2012, 5(1): 1-13. DOI:10.1007/x12517-010-0202-6.
[16]WANG Y, GUO Q, SU C, et al. Strontium isotope characterization and major ion geochemistry of karst water flow, Shentou, Northern China[J]. Journal of Hydrology, 2006, 328(3/4):603.
[17]黄平华,陈建生,宁超,等. 焦作矿区地下水水化学特征及其地球化学模拟[J]. 现代地质,2010,24(2):369-376.
[18]林永生,裴建国,邹胜章,等. 清江下游红层岩溶及其水化学特征[J]. 广西师范大学学报(自然科学版),2018, 36(3):113-120.
[19]夏怡凡. SPSS统计分析精要与实例详解[M]. 北京:电子工业出版社,2010.
[20]桂和荣. 皖北矿区地下水水文地球化学特征及判别模式研究[D]. 合肥:中国科学技术大学,2005.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHEN Chunqiang, DENG Hua, CHEN Xiaomei. Assessment on Human Health Risk of Heavy Metal in the Food Crops fromThree Manganese Mine Recovery Areas in Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 127 -135 .
[2] ZHOU Shu, JIANG Pinqun, SONG Shuxiang. Design of a 2.8 to 8.5 GHz High Gain, Low Powerand Fully Integration UWB LNA[J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 9 -16 .
[3] XU Lun-hui, LIU Jing-ning, ZHU Qun-qiang, WANG Qing, XIE Yan, SUO Sheng-chao. Path Deviation Control of Automatic Guided Vehicle[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 1 -6 .
[4] KUANG Xian-yan, WU Yun, CAO Wei-hua, WU Yin-feng. Cellular Automata Simulation Model for Urban MixedNon-motor Vehicle Flow[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 7 -14 .
[5] XIAO Rui-jie, LIU Ye, XIU Xiao-ming, KONG Ling-jiang. State Transfer of Two Mechanical Oscillators in Coupled CavityOptomechanical System[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 15 -19 .
[6] HUANG Hui-qiong, QIN Yun-mei. Overtaking Model Based on Drivers’ Characteristics[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 20 -26 .
[7] YUAN Le-ping, SUN Rui-shan. Probabilistic Safety Assessment of Air Traffic Conflict Resolution[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 27 -31 .
[8] YANG Pan-pan, ZHU Long-ji, CAO Meng-jie. TSC Type of Reactive Power Compensation Control SystemBased on STM32[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 32 -37 .
[9] ZHANG Mei-yue. Some New Results for the Electron Beams Focusing System Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 38 -44 .
[10] HOU Xiao-dong, CAI Bin-bin, JIN Wei-dong, DUAN Wang-wang. A New Weighted Evidence Fusion Algorithm Based on Evidence Distanceand Fuzzy Entropy Theory[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 45 -51 .