Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (5): 75-90.doi: 10.16088/j.issn.1001-6600.2024061104

• Physics and Electronic Engineering • Previous Articles     Next Articles

Research on Age of Information in Data Collection Networks for Industrial Internet of Things

CAO Jie1,2, JIANG Hongbing1, ZHU Xu1,2*   

  1. 1. School of Electronic and Information Engineering, Harbin Institute of Technology, Shenzhen Guangdong 518055, China;
    2. Guangxi Key Laboratory of Brain-inspired Computing and Intelligent Chips (Guangxi Normal University), Guilin Guangxi 541004, China
  • Received:2024-06-11 Revised:2025-01-05 Online:2025-09-05 Published:2025-08-05

Abstract: This paper addresses the need for high timeliness and reliability in industrial Internet of things (IIoT) data acquisition systems. It considers the coexistence of traffic with different priority levels, the scarcity of resources, and the randomness of channels. A method based on a stochastic hybrid system is proposed to construct a timeliness characterization model suitable for such networks. The model is designed to describe the timeliness features of data acquisition networks under conditions involving a large volume of traffic with varying priorities. Based on this model, the paper explores the impact of coupling parameters within the system on the information timeliness. The research results indicate that by optimizing the link sensing strategy, the negative impact of transmission error probability on information age can be effectively reduced. In networks with the same priority, the information age of the link gradually stabilizes towards a limiting value as the data generation rate increases. In networks with different priorities, higher-priority links improve their timeliness by sacrificing the timeliness of other links. As the data generation rate increases, the system gradually trends towards a degradation into a single-link mode. Therefore, to ensure the overall timeliness of the system, it is necessary to optimize the sensing resource allocation for low-priority links to maintain efficient system operation.

Key words: age of information, industrial Internet of things (IIoT), data collection, priority, sensing resource allocation, stochastic hybrid system

CLC Number:  TN929.5; TP393
[1] 刘月强, 王婷. 工业4.0时代: 物联网与大数据融合的挑战与机遇[J]. 内蒙古科技与经济, 2024(8): 10-12, 17.
[2] YUE Y G, HE P. A comprehensive survey on the reliability of mobile wireless sensor networks: Taxonomy, challenges, and future directions[J]. Information Fusion, 2018, 44: 188-204. DOI: 10.1016/j.inffus.2018.03.005.
[3] 王改静.工业物联网:数字经济发展新引擎[N].通信产业报,2023-02-13(017).DOI: 10.28806/n.cnki.ntxcy.2023.000076.
[4] 张泉灵, 洪艳萍. 智能工厂综述[J]. 自动化仪表, 2018, 39(8): 1-5. DOI: 10.16086/j.cnki.issn1000-0380.2018020033.
[5] ABD-ELMAGID M A, PAPPAS N, DHILLON H S. On the role of age of information in the Internet of Things[J]. IEEE Communications Magazine, 2019, 57(12): 72-77. DOI: 10.1109/MCOM.001.1900041.
[6] 曹杰. 短包工业实时系统的性能分析和优化[D]. 哈尔滨: 哈尔滨工业大学, 2022. DOI: 10.27061/d.cnki.ghgdu.2022.000325.
[7] XU H S, LIU X, HATCHER W G, et al. Priority-aware reinforcement-learning-based integrated design of networking and control for industrial Internet of Things[J]. IEEE Internet of Things Journal, 2021, 8(6): 4668-4680. DOI: 10.1109/JIOT.2020.3027506.
[8] KAUL S, YATES R, GRUTESER M. Real-time status: how often should one update? [C]// 2012 Proceedings IEEE INFOCOM. Piscataway, NJ: IEEE, 2012: 2731-2735. DOI: 10.1109/INFCOM.2012.6195689.
[9] 曹雅丽. 工业物联网联合数据获取及传输优化技术研究[D]. 北京: 北京邮电大学, 2022. DOI: 10.26969/d.cnki.gbydu.2022.000725.
[10] 宋贤鑫. 基于信息时效性的通信与计算融合策略研究[D]. 北京: 北京邮电大学, 2020. DOI: 10.26969/d.cnki.gbydu.2020.003150.
[11] 牛志升. 面向6G网络的高可靠低延时通信计算与控制[J]. 中国科学: 信息科学, 2024, 54(5): 1267-1282. DOI: 10.1360/SSI-2023-0336.
[12] FENG Y F, CHEN Z C, WANG M, et al. Modern random access-based IoT networks design: from a timeliness-fidelity perspective[J]. IEEE Communications Magazine, 2024, 62(7): 74-80. DOI: 10.1109/MCOM.001.2300785.
[13] KAUL S, GRUTESER M, RAI V, et al. Minimizing age of information in vehicular networks[C]// 2011 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks. Piscataway, NJ: IEEE, 2011: 350-358. DOI: 10.1109/SAHCN.2011.5984917.
[14] KAUL S K, YATES R D, GRUTESER M. Status updates through queues[C]// 2012 46th Annual Conference on Information Sciences and Systems (CISS). Piscataway, NJ: IEEE, 2012: 1-6. DOI: 10.1109/CISS.2012.6310931.
[15] KOSTA A, PAPPAS N, EPHREMIDES A, et al. The age of information in a discrete time queue: stationary distribution and non-linear age mean analysis[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(5): 1352-1364. DOI: 10.1109/JSAC.2021.3065045.
[16] SOYSAL A, ULUKUS S. Age of information in G/G/1/1 systems: age expressions, bounds, special cases, and optimization[J]. IEEE Transactions on Information Theory, 2021, 67(11): 7477-7489. DOI: 10.1109/TIT.2021.3095823.
[17] SUN Y, UYSAL-BIYIKOGLU E, YATES R D, et al. Update or wait: how to keep your data fresh[J]. IEEE Transactions on Information Theory, 2017, 63(11): 7492-7508. DOI: 10.1109/TIT.2017.2735804.
[18] COSTA M, CODREANU M, EPHREMIDES A. On the age of information in status update systems with packet management[J]. IEEE Transactions on Information Theory, 2016, 62(4): 1897-1910. DOI: 10.1109/TIT.2016.2533395.
[19] CHEN K, HUANG L B. Age-of-information in the presence of error[C]// 2016 IEEE International Symposium on Information Theory (ISIT). Piscataway, NJ: IEEE, 2016: 2579-2583. DOI: 10.1109/ISIT.2016.7541765.
[20] YATES R D, KAUL S K. The age of information: real-time status updating by multiple sources[J]. IEEE Transactions on Information Theory, 2019, 65(3): 1807-1827. DOI: 10.1109/TIT.2018.2871079.
[21] 中国信息通信研究院(工业和信息化部电信研究院). 物联网安全白皮书[R/OL]. (2018-09)[2024-05-29]. http://www.caict.ac.cn/kxyj/qwfb/bps/201809/P020180919390470911802.pdf.
[22] YU B Q, CHEN X M, CAI Y M. Age of information for the cellular Internet of Things: challenges, key techniques, and future trends[J]. IEEE Communications Magazine, 2022, 60(12): 20-26. DOI: 10.1109/MCOM.008.2200148.
[23] XIA C Q, JIN X, XU C, et al. Real-time scheduling under heterogeneous routing for industrial Internet of Things[J]. Computers & Electrical Engineering, 2020, 86: 106740. DOI: 10.1016/j.compeleceng.2020.106740.
[24] HUANG J, YU T, YANG F, et al. AoI-aware resource allocation with interference avoidance for ultradense industrial Internet of Things networks[J]. IEEE Internet of Things Journal, 2024, 11(17): 28787-28797. DOI: 10.1109/JIOT.2024.3403849.
[25] SERDAROGLU K C, BAYDERE S. An efficient multipriority data packet traffic scheduling approach for fog of things[J]. IEEE Internet of Things Journal, 2022, 9(1): 525-534. DOI: 10.1109/JIOT.2021.3084502.
[26] DEWA G R R, PARK C, SOHN I. Priority-aware scheduling for high-dense healthcare IoT (H-IoT) networks using message-passing algorithm[J]. IEEE Internet of Things Journal, 2024, 11(12): 21604-21619. DOI: 10.1109/JIOT.2024.3375322.
[27] KAUL S K, YATES R D. Age of information: updates with priority[C]// 2018 IEEE International Symposium on Information Theory (ISIT). Piscataway, NJ: IEEE, 2018: 2644-2648. DOI: 10.1109/ISIT.2018.8437591.
[28] DONCEL J, ASSAAD M. Age of information in a decentralized network of parallel queues with routing and packets losses[J]. Journal of Communications and Networks, 2022, 24(1): 17-20. DOI: 10.23919/JCN.2020.000036.
[29] YATES R D. The age of information in networks: moments, distributions, and sampling[J]. IEEE Transactions on Information Theory, 2020, 66(9): 5712-5728. DOI: 10.1109/TIT.2020.2998100.
[30] BAI G M, QU L, LIU J, et al. AoI-aware joint scheduling and power allocation in intelligent transportation system: a deep reinforcement learning approach[J]. IEEE Transactions on Vehicular Technology, 2024, 73(4): 5781-5795. DOI: 10.1109/TVT.2023.3333825.
[31] TANG J H, CHEN F F, LI J P, et al. Learn to schedule: data freshness-oriented intelligent scheduling in industrial IoT[J]. IEEE Transactions on Cognitive Communications and Networking, 2025,11(1): 505-518. DOI: 10.1109/TCCN.2024.3445342.
[32] CHEN F F, TANG J H, YIN Z H. Age of loop information with flexible transmission enabled communication and control co-design in industrial IoT[J]. China Communications, 2024, 21(11): 40-55. DOI: 10.23919/JCC.fa.2024-0218.202411.
[33] LI J P, TANG J H, LIU Z L. On the data freshness for industrial Internet of things with mobile-edge computing[J]. IEEE Internet of things Journal, 2022, 9(15): 13542-13554. DOI: 10.1109/JIOT.2022.3143250.
[34] HESPANHA J P. Stochastic hybrid systems: application to communication networks[M]// Hybrid Systems: Computation and Control. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004: 387-401. DOI: 10.1007/978-3-540-24743-2_26.

[1] DOU Xian-zhen, XU Chen, ZUO Yang. Energy Priority-based Optimal Gradient Routing Protocol for Wireless Sensor Networks [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 157-163.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHONG Qiao, CHEN Shenglong, TANG Congcong. Hydrogel Technology for Microalgae Collection: Status Overview, Challenges and Development Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 16 -29 .
[2] SHI Huilu, MO Yanhua, LUO Haiyu, MA Jiangming. Inhibitory Activity of Ethyl Acetate Extracts of Loropetalum chinense against Pathogens[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(1): 1 -8 .
[3] HE Qing, LI Dong, LUO Siyuan, HE Yudong, LI Biao, WANG Qiang. Research Progress in Ultra-wideband Rydberg Atomic Antenna Technology[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 1 -19 .
[4] HUANG Renhui, ZHANG Ruifeng, WEN Xiaohao, BI Jinjie, HUANG Shoulin, LI Tinghui. Complex-value Covariance-based Convolutional Neural Network for Decoding Motor Imagery-based EEG Signals[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 43 -56 .
[5] TIAN Sheng, XIONG Chenyin, LONG Anyang. Point Cloud Classification Method of Urban Roads Based on Improved PointNet++[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 1 -14 .
[6] LI Zongxiao, ZHANG Jian, LUO Xinyue, ZHAO Yifei, LU Fei. Research on Arrival Trajectory Prediction Based on K-means and Adam-LSTM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 15 -23 .
[7] SONG Mingkai, ZHU Chengjie. Research on Fault Location of Distribution Network Based on H-WOA-GWO and Region Correction Strategies[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 24 -37 .
[8] HAN Shuo, JIANG Linfeng, YANG Jianbin. Attention-based PINNs Method for Solving Saint-Venant Equations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 58 -68 .
[9] LI Zhixin, KUANG Wenlan. Fine-grained Image Classification Combining Adaptive Spatial Mutual Attention and Feature Pair Integration Discrimination[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 69 -82 .
[10] SHI Tianyi, NAN Xinyuan, GUO Xiangyu, ZHAO Pu, CAI Xin. Improved ConvNeXt-based Algorithm for Apple Leaf Disease Classification[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 83 -96 .